-
Notifications
You must be signed in to change notification settings - Fork 24
/
dataset_tool.py
462 lines (381 loc) · 19.6 KB
/
dataset_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Tool for creating ZIP/PNG based datasets."""
from collections.abc import Iterator
from dataclasses import dataclass
import functools
import io
import json
import os
import re
import zipfile
from pathlib import Path
from typing import Callable, Optional, Tuple, Union
import click
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm
from training.encoders import StabilityVAEEncoder
#----------------------------------------------------------------------------
@dataclass
class ImageEntry:
img: np.ndarray
label: Optional[int]
#----------------------------------------------------------------------------
# Parse a 'M,N' or 'MxN' integer tuple.
# Example: '4x2' returns (4,2)
def parse_tuple(s: str) -> Tuple[int, int]:
m = re.match(r'^(\d+)[x,](\d+)$', s)
if m:
return int(m.group(1)), int(m.group(2))
raise click.ClickException(f'cannot parse tuple {s}')
#----------------------------------------------------------------------------
def maybe_min(a: int, b: Optional[int]) -> int:
if b is not None:
return min(a, b)
return a
#----------------------------------------------------------------------------
def file_ext(name: Union[str, Path]) -> str:
return str(name).split('.')[-1]
#----------------------------------------------------------------------------
def is_image_ext(fname: Union[str, Path]) -> bool:
ext = file_ext(fname).lower()
return f'.{ext}' in PIL.Image.EXTENSION
#----------------------------------------------------------------------------
def open_image_folder(source_dir, *, max_images: Optional[int]) -> tuple[int, Iterator[ImageEntry]]:
input_images = []
def _recurse_dirs(root: str): # workaround Path().rglob() slowness
with os.scandir(root) as it:
for e in it:
if e.is_file():
input_images.append(os.path.join(root, e.name))
elif e.is_dir():
_recurse_dirs(os.path.join(root, e.name))
_recurse_dirs(source_dir)
input_images = sorted([f for f in input_images if is_image_ext(f)])
arch_fnames = {fname: os.path.relpath(fname, source_dir).replace('\\', '/') for fname in input_images}
max_idx = maybe_min(len(input_images), max_images)
# Load labels.
labels = dict()
meta_fname = os.path.join(source_dir, 'dataset.json')
if os.path.isfile(meta_fname):
with open(meta_fname, 'r') as file:
data = json.load(file)['labels']
if data is not None:
labels = {x[0]: x[1] for x in data}
# No labels available => determine from top-level directory names.
if len(labels) == 0:
toplevel_names = {arch_fname: arch_fname.split('/')[0] if '/' in arch_fname else '' for arch_fname in arch_fnames.values()}
toplevel_indices = {toplevel_name: idx for idx, toplevel_name in enumerate(sorted(set(toplevel_names.values())))}
if len(toplevel_indices) > 1:
labels = {arch_fname: toplevel_indices[toplevel_name] for arch_fname, toplevel_name in toplevel_names.items()}
def iterate_images():
for idx, fname in enumerate(input_images):
img = np.array(PIL.Image.open(fname).convert('RGB'))
yield ImageEntry(img=img, label=labels.get(arch_fnames[fname]))
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
#----------------------------------------------------------------------------
def open_image_zip(source, *, max_images: Optional[int]) -> tuple[int, Iterator[ImageEntry]]:
with zipfile.ZipFile(source, mode='r') as z:
input_images = [str(f) for f in sorted(z.namelist()) if is_image_ext(f)]
max_idx = maybe_min(len(input_images), max_images)
# Load labels.
labels = dict()
if 'dataset.json' in z.namelist():
with z.open('dataset.json', 'r') as file:
data = json.load(file)['labels']
if data is not None:
labels = {x[0]: x[1] for x in data}
def iterate_images():
with zipfile.ZipFile(source, mode='r') as z:
for idx, fname in enumerate(input_images):
with z.open(fname, 'r') as file:
img = np.array(PIL.Image.open(file).convert('RGB'))
yield ImageEntry(img=img, label=labels.get(fname))
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
#----------------------------------------------------------------------------
def make_transform(
transform: Optional[str],
output_width: Optional[int],
output_height: Optional[int]
) -> Callable[[np.ndarray], Optional[np.ndarray]]:
def scale(width, height, img):
w = img.shape[1]
h = img.shape[0]
if width == w and height == h:
return img
img = PIL.Image.fromarray(img, 'RGB')
ww = width if width is not None else w
hh = height if height is not None else h
img = img.resize((ww, hh), PIL.Image.Resampling.LANCZOS)
return np.array(img)
def center_crop(width, height, img):
crop = np.min(img.shape[:2])
img = img[(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2, (img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((width, height), PIL.Image.Resampling.LANCZOS)
return np.array(img)
def center_crop_wide(width, height, img):
ch = int(np.round(width * img.shape[0] / img.shape[1]))
if img.shape[1] < width or ch < height:
return None
img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((width, height), PIL.Image.Resampling.LANCZOS)
img = np.array(img)
canvas = np.zeros([width, width, 3], dtype=np.uint8)
canvas[(width - height) // 2 : (width + height) // 2, :] = img
return canvas
def center_crop_imagenet(image_size: int, arr: np.ndarray):
"""
Center cropping implementation from ADM.
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
"""
pil_image = PIL.Image.fromarray(arr)
while min(*pil_image.size) >= 2 * image_size:
new_size = tuple(x // 2 for x in pil_image.size)
assert len(new_size) == 2
pil_image = pil_image.resize(new_size, resample=PIL.Image.Resampling.BOX)
scale = image_size / min(*pil_image.size)
new_size = tuple(round(x * scale) for x in pil_image.size)
assert len(new_size) == 2
pil_image = pil_image.resize(new_size, resample=PIL.Image.Resampling.BICUBIC)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size]
if transform is None:
return functools.partial(scale, output_width, output_height)
if transform == 'center-crop':
if output_width is None or output_height is None:
raise click.ClickException('must specify --resolution=WxH when using ' + transform + 'transform')
return functools.partial(center_crop, output_width, output_height)
if transform == 'center-crop-wide':
if output_width is None or output_height is None:
raise click.ClickException('must specify --resolution=WxH when using ' + transform + ' transform')
return functools.partial(center_crop_wide, output_width, output_height)
if transform == 'center-crop-dhariwal':
if output_width is None or output_height is None:
raise click.ClickException('must specify --resolution=WxH when using ' + transform + ' transform')
if output_width != output_height:
raise click.ClickException('width and height must match in --resolution=WxH when using ' + transform + ' transform')
return functools.partial(center_crop_imagenet, output_width)
assert False, 'unknown transform'
#----------------------------------------------------------------------------
def open_dataset(source, *, max_images: Optional[int]):
if os.path.isdir(source):
return open_image_folder(source, max_images=max_images)
elif os.path.isfile(source):
if file_ext(source) == 'zip':
return open_image_zip(source, max_images=max_images)
else:
raise click.ClickException(f'Only zip archives are supported: {source}')
else:
raise click.ClickException(f'Missing input file or directory: {source}')
#----------------------------------------------------------------------------
def open_dest(dest: str) -> Tuple[str, Callable[[str, Union[bytes, str]], None], Callable[[], None]]:
dest_ext = file_ext(dest)
if dest_ext == 'zip':
if os.path.dirname(dest) != '':
os.makedirs(os.path.dirname(dest), exist_ok=True)
zf = zipfile.ZipFile(file=dest, mode='w', compression=zipfile.ZIP_STORED)
def zip_write_bytes(fname: str, data: Union[bytes, str]):
zf.writestr(fname, data)
return '', zip_write_bytes, zf.close
else:
# If the output folder already exists, check that is is
# empty.
#
# Note: creating the output directory is not strictly
# necessary as folder_write_bytes() also mkdirs, but it's better
# to give an error message earlier in case the dest folder
# somehow cannot be created.
if os.path.isdir(dest) and len(os.listdir(dest)) != 0:
raise click.ClickException('--dest folder must be empty')
os.makedirs(dest, exist_ok=True)
def folder_write_bytes(fname: str, data: Union[bytes, str]):
os.makedirs(os.path.dirname(fname), exist_ok=True)
with open(fname, 'wb') as fout:
if isinstance(data, str):
data = data.encode('utf8')
fout.write(data)
return dest, folder_write_bytes, lambda: None
#----------------------------------------------------------------------------
@click.group()
def cmdline():
'''Dataset processing tool for dataset image data conversion and VAE encode/decode preprocessing.'''
if os.environ.get('WORLD_SIZE', '1') != '1':
raise click.ClickException('Distributed execution is not supported.')
#----------------------------------------------------------------------------
@cmdline.command()
@click.option('--source', help='Input directory or archive name', metavar='PATH', type=str, required=True)
@click.option('--dest', help='Output directory or archive name', metavar='PATH', type=str, required=True)
@click.option('--max-images', help='Maximum number of images to output', metavar='INT', type=int)
@click.option('--transform', help='Input crop/resize mode', metavar='MODE', type=click.Choice(['center-crop', 'center-crop-wide', 'center-crop-dhariwal']))
@click.option('--resolution', help='Output resolution (e.g., 512x512)', metavar='WxH', type=parse_tuple)
def convert(
source: str,
dest: str,
max_images: Optional[int],
transform: Optional[str],
resolution: Optional[Tuple[int, int]]
):
"""Convert an image dataset into archive format for training.
Specifying the input images:
\b
--source path/ Recursively load all images from path/
--source dataset.zip Load all images from dataset.zip
Specifying the output format and path:
\b
--dest /path/to/dir Save output files under /path/to/dir
--dest /path/to/dataset.zip Save output files into /path/to/dataset.zip
The output dataset format can be either an image folder or an uncompressed zip archive.
Zip archives makes it easier to move datasets around file servers and clusters, and may
offer better training performance on network file systems.
Images within the dataset archive will be stored as uncompressed PNG.
Uncompresed PNGs can be efficiently decoded in the training loop.
Class labels are stored in a file called 'dataset.json' that is stored at the
dataset root folder. This file has the following structure:
\b
{
"labels": [
["00000/img00000000.png",6],
["00000/img00000001.png",9],
... repeated for every image in the datase
["00049/img00049999.png",1]
]
}
If the 'dataset.json' file cannot be found, class labels are determined from
top-level directory names.
Image scale/crop and resolution requirements:
Output images must be square-shaped and they must all have the same power-of-two
dimensions.
To scale arbitrary input image size to a specific width and height, use the
--resolution option. Output resolution will be either the original
input resolution (if resolution was not specified) or the one specified with
--resolution option.
The --transform=center-crop-dhariwal selects a crop/rescale mode that is intended
to exactly match with results obtained for ImageNet in common diffusion model literature:
\b
python dataset_tool.py convert --source=downloads/imagenet/ILSVRC/Data/CLS-LOC/train \\
--dest=datasets/img64.zip --resolution=64x64 --transform=center-crop-dhariwal
"""
PIL.Image.init()
if dest == '':
raise click.ClickException('--dest output filename or directory must not be an empty string')
num_files, input_iter = open_dataset(source, max_images=max_images)
archive_root_dir, save_bytes, close_dest = open_dest(dest)
transform_image = make_transform(transform, *resolution if resolution is not None else (None, None))
dataset_attrs = None
labels = []
for idx, image in tqdm(enumerate(input_iter), total=num_files):
idx_str = f'{idx:08d}'
archive_fname = f'{idx_str[:5]}/img{idx_str}.png'
# Apply crop and resize.
img = transform_image(image.img)
if img is None:
continue
# Error check to require uniform image attributes across
# the whole dataset.
assert img.ndim == 3
cur_image_attrs = {'width': img.shape[1], 'height': img.shape[0]}
if dataset_attrs is None:
dataset_attrs = cur_image_attrs
width = dataset_attrs['width']
height = dataset_attrs['height']
if width != height:
raise click.ClickException(f'Image dimensions after scale and crop are required to be square. Got {width}x{height}')
if width != 2 ** int(np.floor(np.log2(width))):
raise click.ClickException('Image width/height after scale and crop are required to be power-of-two')
elif dataset_attrs != cur_image_attrs:
err = [f' dataset {k}/cur image {k}: {dataset_attrs[k]}/{cur_image_attrs[k]}' for k in dataset_attrs.keys()]
raise click.ClickException(f'Image {archive_fname} attributes must be equal across all images of the dataset. Got:\n' + '\n'.join(err))
# Save the image as an uncompressed PNG.
img = PIL.Image.fromarray(img)
image_bits = io.BytesIO()
img.save(image_bits, format='png', compress_level=0, optimize=False)
save_bytes(os.path.join(archive_root_dir, archive_fname), image_bits.getbuffer())
labels.append([archive_fname, image.label] if image.label is not None else None)
metadata = {'labels': labels if all(x is not None for x in labels) else None}
save_bytes(os.path.join(archive_root_dir, 'dataset.json'), json.dumps(metadata))
close_dest()
#----------------------------------------------------------------------------
@cmdline.command()
@click.option('--model-url', help='VAE encoder model', metavar='URL', type=str, default='stabilityai/sd-vae-ft-mse', show_default=True)
@click.option('--source', help='Input directory or archive name', metavar='PATH', type=str, required=True)
@click.option('--dest', help='Output directory or archive name', metavar='PATH', type=str, required=True)
@click.option('--max-images', help='Maximum number of images to output', metavar='INT', type=int)
def encode(
model_url: str,
source: str,
dest: str,
max_images: Optional[int],
):
"""Encode pixel data to VAE latents."""
PIL.Image.init()
if dest == '':
raise click.ClickException('--dest output filename or directory must not be an empty string')
vae = StabilityVAEEncoder(vae_name=model_url, batch_size=1)
num_files, input_iter = open_dataset(source, max_images=max_images)
archive_root_dir, save_bytes, close_dest = open_dest(dest)
labels = []
for idx, image in tqdm(enumerate(input_iter), total=num_files):
img_tensor = torch.tensor(image.img).to('cuda').permute(2, 0, 1).unsqueeze(0)
mean_std = vae.encode_pixels(img_tensor)[0].cpu()
idx_str = f'{idx:08d}'
archive_fname = f'{idx_str[:5]}/img-mean-std-{idx_str}.npy'
f = io.BytesIO()
np.save(f, mean_std)
save_bytes(os.path.join(archive_root_dir, archive_fname), f.getvalue())
labels.append([archive_fname, image.label] if image.label is not None else None)
metadata = {'labels': labels if all(x is not None for x in labels) else None}
save_bytes(os.path.join(archive_root_dir, 'dataset.json'), json.dumps(metadata))
close_dest()
#----------------------------------------------------------------------------
@cmdline.command()
@click.option('--model-url', help='VAE encoder model', metavar='URL', type=str, default='stabilityai/sd-vae-ft-mse', show_default=True)
@click.option('--source', help='Input directory or archive name', metavar='PATH', type=str, required=True)
@click.option('--dest', help='Output directory or archive name', metavar='PATH', type=str, required=True)
@click.option('--max-images', help='Maximum number of images to output', metavar='INT', type=int)
def decode(
model_url: str,
source: str,
dest: str,
max_images: Optional[int],
):
"""Decode VAE latents to pixels."""
PIL.Image.init()
if dest == '':
raise click.ClickException('--dest output filename or directory must not be an empty string')
vae = StabilityVAEEncoder(vae_name=model_url, batch_size=1)
num_files, input_iter = open_dataset(source, max_images=max_images)
archive_root_dir, save_bytes, close_dest = open_dest(dest)
labels = []
for idx, image in tqdm(enumerate(input_iter), total=num_files):
std_mean = image.img
assert isinstance(std_mean, np.ndarray)
lat = torch.tensor(std_mean).unsqueeze(0).cuda()
pix = vae.decode(vae.encode_latents(lat))[0].permute(1, 2, 0).cpu().numpy()
idx_str = f'{idx:08d}'
archive_fname = f'{idx_str[:5]}/img{idx_str}.png'
img = PIL.Image.fromarray(pix, 'RGB')
image_bits = io.BytesIO()
img.save(image_bits, format='png', compress_level=0, optimize=False)
save_bytes(os.path.join(archive_root_dir, archive_fname), image_bits.getbuffer())
labels.append([archive_fname, image.label] if image.label is not None else None)
metadata = {'labels': labels if all(x is not None for x in labels) else None}
save_bytes(os.path.join(archive_root_dir, 'dataset.json'), json.dumps(metadata))
close_dest()
#----------------------------------------------------------------------------
if __name__ == "__main__":
cmdline()
#----------------------------------------------------------------------------