-
Notifications
You must be signed in to change notification settings - Fork 24
/
train-help.txt
39 lines (34 loc) · 1.7 KB
/
train-help.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Usage: train_edm2.py [OPTIONS]
Train diffusion models according to the EDM2 recipe from the paper
"Analyzing and Improving the Training Dynamics of Diffusion Models".
Examples:
# Train XS-sized model for ImageNet-512 using 8 GPUs
torchrun --standalone --nproc_per_node=8 train_edm2.py \
--outdir=training-runs/00000-edm2-img512-xs \
--data=datasets/img512-sd.zip \
--preset=edm2-img512-xs \
--batch-gpu=32
# To resume training, run the same command again.
Options:
--outdir DIR Where to save the results [required]
--data ZIP|DIR Path to the dataset [required]
--cond BOOL Train class-conditional model [default: True]
--preset STR Configuration preset [default: edm2-img512-s]
--duration NIMG Training duration
--batch NIMG Total batch size
--channels INT Channel multiplier [x>=64]
--dropout FLOAT Dropout probability [0<=x<=1]
--P_mean FLOAT Noise level mean
--P_std FLOAT Noise level standard deviation [x>0]
--lr FLOAT Learning rate max. (alpha_ref) [x>0]
--decay BATCHES Learning rate decay (t_ref) [x>=0]
--batch-gpu NIMG Limit batch size per GPU [default: 0]
--fp16 BOOL Enable mixed-precision training [default: True]
--ls FLOAT Loss scaling [default: 1; x>0]
--bench BOOL Enable cuDNN benchmarking [default: True]
--status NIMG Interval of status prints [default: 128Ki]
--snapshot NIMG Interval of network snapshots [default: 8Mi]
--checkpoint NIMG Interval of training checkpoints [default: 128Mi]
--seed INT Random seed [default: 0]
-n, --dry-run Print training options and exit
--help Show this message and exit.