-
Notifications
You must be signed in to change notification settings - Fork 24
/
reconstruct_phema.py
255 lines (218 loc) · 11.5 KB
/
reconstruct_phema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Perform post-hoc EMA reconstruction."""
import os
import re
import copy
import click
import tqdm
import pickle
import numpy as np
import torch
import dnnlib
import training.phema
#----------------------------------------------------------------------------
# Construct the full path of a network pickle.
def pkl_path(dir, prefix, nimg, std):
name = prefix + f'-{nimg//1000:07d}-{std:.3f}.pkl'
if dir is None:
return None
if dnnlib.util.is_url(dir):
return f'{dir}/{name}'
return os.path.join(dir, name)
#----------------------------------------------------------------------------
# Deduce nimg based on kimg (= nimg//1000).
def kimg_to_nimg(kimg):
nimg = (kimg * 1000 + 999) // 1024 * 1024
assert nimg // 1000 == kimg
return nimg
#----------------------------------------------------------------------------
# List input pickles for post-hoc EMA reconstruction.
# Returns a list of dnnlib.EasyDict(path, nimg, std).
def list_input_pickles(
in_dir, # Directory containing the input pickles.
in_prefix = None, # Input filename prefix. None = anything goes.
in_std = None, # Relative standard deviations of the input pickles. None = anything goes.
):
if not os.path.isdir(in_dir):
raise click.ClickException('Input directory does not exist')
in_std = set(in_std) if in_std is not None else None
pkls = []
with os.scandir(in_dir) as it:
for e in it:
m = re.fullmatch(r'(.*)-(\d+)-(\d+\.\d+)\.pkl', e.name)
if not m or not e.is_file():
continue
prefix = m.group(1)
nimg = kimg_to_nimg(int(m.group(2)))
std = float(m.group(3))
if in_prefix is not None and prefix != in_prefix:
continue
if in_std is not None and std not in in_std:
continue
pkls.append(dnnlib.EasyDict(path=e.path, nimg=nimg, std=std))
pkls = sorted(pkls, key=lambda pkl: (pkl.nimg, pkl.std))
return pkls
#----------------------------------------------------------------------------
# Perform post-hoc EMA reconstruction.
# Returns an iterable that yields dnnlib.EasyDict(out, step_idx, num_steps),
# where 'out' is a list of dnnlib.EasyDict(net, nimg, std, pkl_data, pkl_path)
def reconstruct_phema(
in_pkls, # List of input pickles, expressed as dnnlib.EasyDict(path, nimg, std).
out_std, # List of relative standard deviations to reconstruct.
out_nimg = None, # Training time of the snapshot to reconstruct. None = highest input time.
out_dir = None, # Where to save the reconstructed network pickles. None = do not save.
out_prefix = 'phema', # Output filename prefix.
skip_existing = False, # Skip output files that already exist?
max_batch_size = 8, # Maximum simultaneous reconstructions
verbose = True, # Enable status prints?
):
# Validate input pickles.
if out_nimg is None:
out_nimg = max((pkl.nimg for pkl in in_pkls), default=0)
elif not any(out_nimg == pkl.nimg for pkl in in_pkls):
raise click.ClickException('Reconstruction time must match one of the input pickles')
in_pkls = [pkl for pkl in in_pkls if 0 < pkl.nimg <= out_nimg]
if len(in_pkls) == 0:
raise click.ClickException('No valid input pickles found')
in_nimg = [pkl.nimg for pkl in in_pkls]
in_std = [pkl.std for pkl in in_pkls]
if verbose:
print(f'Loading {len(in_pkls)} input pickles...')
for pkl in in_pkls:
print(' ' + pkl.path)
# Determine output pickles.
out_std = [out_std] if isinstance(out_std, float) else sorted(set(out_std))
if skip_existing and out_dir is not None:
out_std = [std for std in out_std if not os.path.isfile(pkl_path(out_dir, out_prefix, out_nimg, std))]
num_batches = (len(out_std) - 1) // max_batch_size + 1
out_std_batches = np.array_split(out_std, num_batches)
if verbose:
print(f'Reconstructing {len(out_std)} output pickles in {num_batches} batches...')
for i, batch in enumerate(out_std_batches):
for std in batch:
print(f' batch {i}: ', end='')
print(pkl_path(out_dir, out_prefix, out_nimg, std) if out_dir is not None else pkl_path('', '<yield>', out_nimg, std))
# Return an iterable over the reconstruction steps.
class ReconstructionIterable:
def __len__(self):
return num_batches * len(in_pkls)
def __iter__(self):
# Loop over batches.
r = dnnlib.EasyDict(step_idx=0, num_steps=len(self))
for out_std_batch in out_std_batches:
coefs = training.phema.solve_posthoc_coefficients(in_nimg, in_std, out_nimg, out_std_batch)
out = [dnnlib.EasyDict(net=None, nimg=out_nimg, std=std) for std in out_std_batch]
r.out = []
# Loop over input pickles.
for i in range(len(in_pkls)):
with dnnlib.util.open_url(in_pkls[i].path, verbose=False) as f:
in_pkl_data = pickle.load(f)
in_net = in_pkl_data['ema'].to(torch.float32)
# Accumulate weights for each output pickle.
for j in range(len(out)):
if out[j].net is None:
out[j].pkl_data = copy.deepcopy(in_pkl_data)
out[j].net = out[j].pkl_data['ema']
for pj in out[j].net.parameters():
pj.zero_()
for pi, pj in zip(in_net.parameters(), out[j].net.parameters()):
pj += pi * coefs[i, j]
for pi, pj in zip(in_net.buffers(), out[j].net.buffers()):
pj.copy_(pi)
# Finalize outputs.
if i == len(in_pkls) - 1:
for j in range(len(out)):
out[j].net.to(torch.float16)
out[j].pkl_path = pkl_path(out_dir, out_prefix, out_nimg, out[j].std)
if out[j].pkl_path is not None:
os.makedirs(out_dir, exist_ok=True)
with open(out[j].pkl_path, 'wb') as f:
pickle.dump(out[j].pkl_data, f)
r.out = out
# Yield results.
del in_pkl_data, in_net # conserve memory
yield r
r.step_idx += 1
return ReconstructionIterable()
#----------------------------------------------------------------------------
# Parse a comma separated list of relative standard deviations.
# The special token '...' interpreted as an evenly spaced interval.
# Example: '0.01,0.02,...,0.05' returns [0.01, 0.02, 0.03, 0.04, 0.05]
def parse_std_list(s):
if isinstance(s, list):
return s
# Parse raw values.
raw = [None if v == '...' else float(v) for v in s.split(',')]
# Fill in '...' tokens.
out = []
for i, v in enumerate(raw):
if v is not None:
out.append(v)
continue
if i - 2 < 0 or raw[i - 2] is None or raw[i - 1] is None:
raise click.ClickException("'...' must be preceded by at least two floats")
if i + 1 >= len(raw) or raw[i + 1] is None:
raise click.ClickException("'...' must be followed by at least one float")
if raw[i - 2] == raw[i - 1]:
raise click.ClickException("The floats preceding '...' must not be equal")
approx_num = (raw[i + 1] - raw[i - 1]) / (raw[i - 1] - raw[i - 2]) - 1
num = round(approx_num)
if num <= 0:
raise click.ClickException("'...' must correspond to a non-empty interval")
if abs(num - approx_num) > 1e-4:
raise click.ClickException("'...' must correspond to an evenly spaced interval")
for j in range(num):
out.append(raw[i - 1] + (raw[i - 1] - raw[i - 2]) * (j + 1))
# Validate.
out = sorted(set(out))
if not all(0.000 < v < 0.289 for v in out):
raise click.ClickException('Relative standard deviation must be positive and less than 0.289')
return out
#----------------------------------------------------------------------------
# Command line interface.
@click.command()
@click.option('--indir', 'in_dir', help='Directory containing the input pickles', metavar='DIR', type=str, required=True)
@click.option('--inprefix', 'in_prefix', help='Filter inputs based on filename prefix', metavar='STR', type=str, default=None)
@click.option('--instd', 'in_std', help='Filter inputs based on standard deviations', metavar='LIST', type=parse_std_list, default=None)
@click.option('--outdir', 'out_dir', help='Where to save the reconstructed network pickles', metavar='DIR', type=str, required=True)
@click.option('--outprefix', 'out_prefix', help='Output filename prefix', metavar='STR', type=str, default='phema', show_default=True)
@click.option('--outstd', 'out_std', help='List of desired relative standard deviations', metavar='LIST', type=parse_std_list, required=True)
@click.option('--outkimg', 'out_kimg', help='Training time of the snapshot to reconstruct', metavar='KIMG', type=click.IntRange(min=1), default=None)
@click.option('--skip', 'skip_existing', help='Skip output files that already exist', is_flag=True)
@click.option('--batch', 'max_batch_size', help='Maximum simultaneous reconstructions', metavar='INT', type=click.IntRange(min=1), default=8, show_default=True)
def cmdline(in_dir, in_prefix, in_std, out_kimg, **opts):
"""Perform post-hoc EMA reconstruction.
Examples:
\b
# Download raw snapshots for the pre-trained edm2-img512-xs model
rclone copy --progress --http-url https://nvlabs-fi-cdn.nvidia.com/edm2 \\
:http:raw-snapshots/edm2-img512-xs/ raw-snapshots/edm2-img512-xs/
\b
# Reconstruct a new EMA profile with std=0.150
python reconstruct_phema.py --indir=raw-snapshots/edm2-img512-xs \\
--outdir=out --outstd=0.150
\b
# Reconstruct a set of 31 EMA profiles, streaming over the input data 4 times
python reconstruct_phema.py --indir=raw-snapshots/edm2-img512-xs \\
--outdir=out --outstd=0.010,0.015,...,0.250 --batch=8
\b
# Perform reconstruction for the latest snapshot of a given training run
python reconstruct_phema.py --indir=training-runs/00000-edm2-img512-xs \\
--outdir=out --outstd=0.150
"""
if os.environ.get('WORLD_SIZE', '1') != '1':
raise click.ClickException('Distributed execution is not supported')
out_nimg = kimg_to_nimg(out_kimg) if out_kimg is not None else None
in_pkls = list_input_pickles(in_dir=in_dir, in_prefix=in_prefix, in_std=in_std)
rec_iter = reconstruct_phema(in_pkls=in_pkls, out_nimg=out_nimg, **opts)
for _r in tqdm.tqdm(rec_iter, unit='step'):
pass
#----------------------------------------------------------------------------
if __name__ == "__main__":
cmdline()
#----------------------------------------------------------------------------