-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmain.py
317 lines (238 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import os
import sys
import shutil
import time
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from pathlib import Path
from torch import optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import LambdaLR,MultiStepLR
from models.build_model import build_model
from torchvision import utils
import os
import datasets
import models
import math
import yaml
import numpy as np
from datasets.adni_3d import ADNI_3D
from lib.Loss import get_loss_criterion
from lib.utils import DataParallel_withLoss, get_auc_data, accuracy, AverageMeter, balanced_accuracy_score, clip_gradients, visualize_visdom
#import warnings
parser = argparse.ArgumentParser()
parser.add_argument("--config",
type=str,
default="config",
required=False,
help="config")
parser.add_argument("--expansion",
type=int,
default=0,
required=False,
help="expansions to decide the width of the model")
parser.add_argument("--percentage_usage",type=float,
default=1.0,
required=False,
help="percentage of data to use for training")
arguments = parser.parse_args()
best_prec1 = 0
best_loss = 1000
best_micro_auc = 0
best_macro_auc = 0
with open(os.path.join('./'+arguments.config+'.yaml'), 'r') as f:
cfg = yaml.load(f)
if arguments.expansion > 0:
cfg['model']['expansion'] = arguments.expansion
cfg['data']['percentage_usage'] = arguments.percentage_usage
cfg['file_name'] = cfg['file_name']+'_train_perc_'+str(arguments.percentage_usage*100)+'_expansion_'+str(arguments.expansion)+'.pth.tar'
cfg['exp_name'] = cfg['exp_name']+'_train_perc_'+str(arguments.percentage_usage*100)+'_expansion_'+str(arguments.expansion)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main():
global cfg, best_prec1, best_loss, device, best_micro_auc, best_macro_auc
# Set seeds
seed = 168
torch.manual_seed(seed)
if torch.cuda.device_count()>0:
torch.cuda.manual_seed(seed)
main_model = build_model(cfg)
main_model = main_model.to(device)
criterion = get_loss_criterion(cfg,type='CrossEntropyLoss').to(device)
#Loss parallel
model = DataParallel_withLoss(main_model,criterion)
if hasattr(model, 'module'):
print('has module!')
model = model.module
# Optimization set up
params = [{'params': filter(lambda p: p.requires_grad, model.parameters())}]
main_optim = getattr(optim, cfg['optimizer']['method'])(
params, **cfg['optimizer']['par'])
scheduler = MultiStepLR(main_optim, milestones=[20,50], gamma=0.1)#get_optim_scheduler(main_optim)
# Plot with visdom
if cfg['visdom']['server'] is not None:
viz_plot = visualize_visdom(cfg)
#Load data
dir_to_scans = cfg['data']['dir_to_scans']
dir_to_tsv = cfg['data']['dir_to_tsv']
train_dataset = ADNI_3D(dir_to_scans, dir_to_tsv, mode = 'Train',
n_label = cfg['model']['n_label'], percentage_usage=cfg['data']['percentage_usage'])
val_dataset = ADNI_3D(dir_to_scans, dir_to_tsv, mode = 'Val', n_label = cfg['model']['n_label'])
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=cfg['data']['batch_size'], shuffle=True,
num_workers=cfg['data']['workers'], pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=cfg['data']['val_batch_size'], shuffle=False,
num_workers=cfg['data']['workers'], pin_memory=True)
ndata = len(train_dataset.subject_id)
print('In total ', str(ndata), ' patients in training set')
# Training !!!
for epoch in range(cfg['training_parameters']['start_epoch'], cfg['training_parameters']['epochs']):
# train for one epoch
train_loss, train_acc = train(cfg,train_loader, model, scheduler, criterion, main_optim, epoch)
# evaluate on validation set
val_loss, val_acc, confusion_matrix, auc_outs = validate(cfg,val_loader,model,criterion,epoch)
#prec1 /= len(val_dataset)
#scheduler.step()
print('Epoch [{0}]: Validation Accuracy {prec1:.3f}\t'.format(
epoch, prec1=val_acc))
if cfg['visdom']['server'] is not None:
viz_plot.plot(epoch, train_loss, val_loss, train_acc, val_acc, confusion_matrix, auc_outs)
# Save model
is_best = (val_acc > best_prec1)
lowest_loss = (val_loss < best_loss)
is_best_micro_auc = (auc_outs[2][len(auc_outs[2])-2]>= best_micro_auc)
is_best_macro_auc = (auc_outs[2][len(auc_outs[2])-1]> best_macro_auc)
best_prec1 = max(val_acc, best_prec1)
best_loss = min(val_loss,best_loss)
best_micro_auc = max(auc_outs[2][len(auc_outs[2])-2], best_micro_auc)
best_macro_auc = max(auc_outs[2][len(auc_outs[2])-1], best_macro_auc)
is_best_auc = (auc_outs[2][len(auc_outs[2])-2]>0.8) & (auc_outs[2][len(auc_outs[2])-1]>0.8)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'best_loss' : best_loss,
'optimizer' : main_optim.state_dict(),
}, is_best, lowest_loss, is_best_micro_auc, is_best_macro_auc, is_best_auc, filename=cfg['file_name'])
def train(cfg, train_loader, main_model, scheduler,
criterion, main_optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
main_losses = AverageMeter()
# switch to train mode
main_model.train()
end = time.time()
logit_all = []
target_all = []
for i, (input, target, index, mmse, segment,age) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
index = index.to(device)
if cfg['training_parameters']['use_age']:
age = age.to(device)
else:
age = None
# compute output
input = input.to(device)
target = target.to(device)
main_loss, logit = main_model([input, age], target)
main_loss = main_loss.mean()
logit_all.append(logit.data.cpu())
target_all.append(target.data.cpu())
acc,_ = accuracy(logit.data.cpu(),target.data.cpu())
main_optimizer.zero_grad()
main_loss.backward()
clip_gradients(main_model, i, cfg['training_parameters']['max_grad_l2_norm'])
main_optimizer.step()
# measure accuracy and record loss
main_losses.update(main_loss.cpu().item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % cfg['training_parameters']['print_freq'] == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {accuracy:.3f}\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=main_losses, accuracy=acc[0].item()))
logit_all = torch.cat(logit_all).numpy()
target_all = torch.cat(target_all).numpy()
acc_all = balanced_accuracy_score(target_all, np.argmax(logit_all,1))
return main_losses.avg, acc_all*100
def validate(cfg,val_loader,main_model,criterion,epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
main_losses = AverageMeter()
end = time.time()
correct_all = 0.0
# switch to validation mode
main_model.eval()
confusion_matrix = torch.zeros(cfg['model']['n_label'], cfg['model']['n_label'])
logit_all = []
target_all = []
for i, (input, target, patient_idx, mmse, segment,age) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.to(device)
target = target.to(device)
if cfg['training_parameters']['use_age']:
age = age.to(device)
else:
age = None
# compute output
main_loss, logit = main_model([input, age], target)
main_loss = main_loss.mean()
logit_all.append(torch.tensor(logit.data.cpu()))
target_all.append(torch.tensor(target.data.cpu()))
acc,_ = accuracy(logit.data.cpu(),target.data.cpu())
_, preds = torch.max(logit.cpu(), 1)
for t, p in zip(target.cpu().view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
acc,correct = accuracy(logit.cpu(),target.cpu())
correct_all += correct[0].item()
# measure accuracy and record loss
main_losses.update(main_loss.cpu().item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % cfg['training_parameters']['print_freq'] == 0:
print('Validation [{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {accuracy:.3f}\t'.format(
epoch, i, len(val_loader), batch_time=batch_time,
data_time=data_time, loss=main_losses, accuracy=acc[0].item()))
#plot AUC curves
logit_all = torch.cat(logit_all).numpy()
target_all = torch.cat(target_all).numpy()
acc_all = balanced_accuracy_score(target_all, np.argmax(logit_all,1))
plotting_fpr, plotting_tpr, roc_auc = get_auc_data(logit_all, target_all,cfg['model']['n_label'])
return main_losses.avg, acc_all*100, confusion_matrix, [plotting_fpr, plotting_tpr, roc_auc]
def save_checkpoint(state, is_best, lowest_loss, is_best_micro_auc, is_best_macro_auc, is_best_auc, filename='checkpoint.pth.tar'):
saving_dir = Path(filename).parent
print(saving_dir)
if not os.path.exists(saving_dir):
os.mkdir(saving_dir)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace('.pth.tar','')+'_model_best.pth.tar')
if lowest_loss:
shutil.copyfile(filename, filename.replace('.pth.tar','')+'_model_low_loss.pth.tar')
if is_best_micro_auc:
shutil.copyfile(filename, filename.replace('.pth.tar','')+'_model_best_micro.pth.tar')
if is_best_macro_auc:
shutil.copyfile(filename, filename.replace('.pth.tar','')+'_model_best_macro.pth.tar')
if is_best_auc:
shutil.copyfile(filename, filename.replace('.pth.tar','')+'_model_best_auc.pth.tar')
if __name__ == '__main__':
main()