-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathtrainModel.py
188 lines (152 loc) · 8.86 KB
/
trainModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
# import torch.nn as nn
# import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
# import torchwordemb
import torch.optim as optim
import sys
import time
import gc
import pickle
import os
import models2 as m
import enc_model as m3
# import pandas as pd
# from util import *
import torch.utils.data
# from sklearn.metrics import auc
# from sklearn import metrics
'''
General Training Script for PyTorch Models
-- Modified to accommodate more flexible LSTM structure
'''
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--nClassGender", type = int, default=2) # Number of classes in gender variable
parser.add_argument("--nClassRace", type=int, default=25) # Number of classes in race variable
parser.add_argument("--nClassEthnic", type=int, default=29) # Number of classes in ethnic variable
parser.add_argument("--modelName", default="Enc_CNN_LSTM")
parser.add_argument("--dimLSTM", type=int, default=128) # LSTM dimension
parser.add_argument("--dimLSTM_num", type=int, default=128) # LSTM dimension for numericals
parser.add_argument("--p_dropOut", type=float, default=.5)
parser.add_argument("--batch_norm", action='store_true')
parser.add_argument("--bidir", action='store_true')
parser.add_argument("--train_embed", action='store_true')
parser.add_argument("--rnnType", default="GRU")
parser.add_argument("--enc_len", type=int, default=20)
parser.add_argument("--doc_len", type=int, default=1000)
parser.add_argument("--n_iter", type=int, default=10)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--lr_decay3", type=int, default=10) # Decay learning rate every lr_decay3 epochs
parser.add_argument("--i", type=int, default=1) # Index of the element in the parameter set to be tuned
parser.add_argument("--batchSizePos", type=int, default=16)
parser.add_argument("--batchSizeNeg", type=int, default=0)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--flg_cuda", action='store_true')
parser.add_argument("--emb_dim", type=int, default=300) # Embedding dimension
parser.add_argument("--logInterval", type=int, default=1) # Print test accuracy every n epochs
parser.add_argument("--flgSave", action='store_true')
parser.add_argument("--savePath", default='./')
parser.add_argument("--filters", type=int, default=128)
parser.add_argument("--nK", type=int, default=3) # Number of kernels
parser.add_argument("--randSeed", type=int, default=42)
parser.add_argument("--posThres", type=float, default=0.5)
parser.add_argument("--inputPath", default="/ifs/data/razavianlab/encSeq_input/dim50/")
parser.add_argument("--alpha_L1", type=float, default=0.0)
parser.add_argument("--randn_std", type=float, default=None)
parser.add_argument("--flgBias", action='store_true')
parser.add_argument("--flg_gradClip", action='store_true')
parser.add_argument("--flg_AllLSTM", action='store_true')
parser.add_argument("--flg_useNum", action='store_true')
args = parser.parse_args()
torch.manual_seed(args.randSeed) # For reproducible results
if args.flgSave:
if not os.path.isdir(args.savePath):
os.mkdir(args.savePath)
# args.d = ['chf', 'kf', 'str'][args.i -1]
# lsAlpha = [0.0, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
# args.alpha_L1 = lsAlpha[args.i -1]
if args.flg_AllLSTM:
dimLSTM = args.dimLSTM * args.enc_len
else:
dimLSTM = args.dimLSTM
lsDim = [[dimLSTM, 256, 3], [dimLSTM, 512, 256, 3]][args.i-1]
print('General parameters: ', args)
unique = False
print("Loading Data")
# if args.modelName in ['Enc_SumLSTM', 'Enc_CNN_LSTM']:
embedding = pickle.load(open(args.inputPath + 'embedding.p', 'rb'))
embedding = torch.from_numpy(embedding).float()
if args.modelName in ['Enc_SumLSTM', 'Enc_CNN_LSTM', 'DemoLab', 'Enc_CNN_LSTM_DemoLab']:
trainset_pos = m3.encDataset(args.inputPath, 'dfTrainPos.json', args.nClassGender, args.nClassRace, args.nClassEthnic,
transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len))
trainset_neg = m3.encDataset(args.inputPath, 'dfTrainNeg.json', args.nClassGender, args.nClassRace, args.nClassEthnic,
transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len))
testset = m3.encDataset(args.inputPath, 'dfDev.json', args.nClassGender, args.nClassRace, args.nClassEthnic,
transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len))
else:
trainset_pos = m3.staticDataset(args.inputPath, 'dfTrainPos.json', args.nClassGender, args.nClassRace, args.nClassEthnic,
transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len))
trainset_neg = m3.staticDataset(args.inputPath, 'dfTrainNeg.json', args.nClassGender, args.nClassRace, args.nClassEthnic,
transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len))
testset = m3.staticDataset(args.inputPath, 'dfDev.json', args.nClassGender, args.nClassRace, args.nClassEthnic,
transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len))
print('To Loader')
if args.flg_cuda:
train_loader_pos = torch.utils.data.DataLoader(trainset_pos, batch_size=args.batchSizePos, shuffle=True,
pin_memory=True)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batchSizePos + args.batchSizeNeg,
shuffle=False, pin_memory=True)
if trainset_neg is not None:
train_loader_neg = torch.utils.data.DataLoader(trainset_neg, batch_size=args.batchSizeNeg, shuffle=True,
pin_memory=True)
else:
train_loader_pos = torch.utils.data.DataLoader(trainset_pos, batch_size=args.batchSizePos, shuffle=True,
pin_memory=False)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batchSizePos + args.batchSizeNeg,
shuffle=False, pin_memory=False)
if trainset_neg is not None:
train_loader_neg = torch.utils.data.DataLoader(trainset_neg, batch_size=args.batchSizeNeg, shuffle=True,
pin_memory=False)
model_paras = {'enc_len': args.enc_len, 'doc_len': args.doc_len, 'flg_updateEmb': args.train_embed,
'flg_bn': args.batch_norm,
'rnnType': args.rnnType, 'bidir': args.bidir, 'p_dropOut': args.p_dropOut, 'lsDim': lsDim,
'dimLSTM': args.dimLSTM,
'flg_cuda': args.flg_cuda, 'filters': args.filters, 'Ks': [i + 1 for i in range(args.nK)],
'randn_std': args.randn_std, 'lastRelu': True, 'flgBias': args.flgBias,
'flg_AllLSTM': args.flg_AllLSTM,
'flg_useNum': args.flg_useNum, 'dimLSTM_num': args.dimLSTM_num}
print('Model parameters: ', model_paras)
if args.modelName in ['Enc_SumLSTM', 'Enc_CNN_LSTM', 'DemoLab', 'Enc_CNN_LSTM_DemoLab']:
model = getattr(m3, args.modelName)(model_paras, embedding)
else:
from argparse import Namespace
static_model_args = Namespace()
static_model_args.dropout = args.p_dropOut
static_model_args.batch_norm = args.batch_norm
static_model_args.kernels = args.nK
static_model_args.bidir = args.bidir
static_model_args.train_embed = args.train_embed
static_model_args.max_len = 2000
static_model_args.n_out = 3
static_model_args.h = args.filters
static_model_args.n_demo_feat = 208
model = getattr(m, args.modelName)(embedding , static_model_args)
if args.flg_cuda:
model = model.cuda()
print(model)
opt = optim.Adam(model.params, lr=args.lr)
print("Beginning Training")
train_paras = {'n_iter': args.n_iter, 'log_interval': [args.logInterval, 1000], 'flg_cuda': args.flg_cuda,
'lr_decay': [args.lr, 0.9, args.lr_decay3, 1e-5],
'flgSave': args.flgSave, 'savePath': args.savePath, 'posThres': args.posThres,
'alpha_L1': args.alpha_L1, 'flg_gradClip': args.flg_gradClip}
m = m3.trainModel(train_paras, train_loader_pos, test_loader, model, opt, train_loader_neg=train_loader_neg)
_, lsTrainAccuracy, lsTestAccuracy = m.run()
testAuc = [np.mean(x[1]) for x in lsTestAccuracy]
print('Test AUC max: %.3f' % (max(testAuc)))
print('Test AUC final: %.3f' % (testAuc[-1]))
stopIdx = min(testAuc.index(max(testAuc)) * args.logInterval, args.n_iter)
print('Stop at: %d' % (stopIdx))