-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
176 lines (142 loc) · 5.35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from flask import Flask, request, jsonify
from dotenv import load_dotenv
import os
import joblib
import numpy as np
from openai import OpenAI
load_dotenv()
app = Flask(__name__)
# Initialize OpenAI client if API key is available
openai_api_key = os.getenv("OPENAI_API_KEY")
client = None
if openai_api_key and openai_api_key != "your_openai_api_key_here":
client = OpenAI(api_key=openai_api_key)
# Load the model if it exists
MODEL_PATH = "model/housing_model.pkl"
SCALER_PATH = "model/scaler.pkl"
model = None
scaler = None
try:
if os.path.exists(MODEL_PATH) and os.path.exists(SCALER_PATH):
model = joblib.load(MODEL_PATH)
scaler = joblib.load(SCALER_PATH)
except Exception as e:
print(f"Error loading model: {str(e)}")
@app.route("/api/health", methods=["GET"])
def health_check():
return jsonify({
"status": "healthy",
"model_loaded": model is not None and scaler is not None
})
@app.route("/api/predict", methods=["POST"])
def predict_housing_price():
try:
if model is None or scaler is None:
return jsonify({
"error": "Model not loaded. Please train the model first."
}), 500
data = request.get_json()
if not data:
return jsonify({"error": "No data provided"}), 400
# Expected features in the correct order
required_features = [
"MedInc", "HouseAge", "AveRooms", "AveBedrms",
"Population", "AveOccup", "Latitude", "Longitude"
]
# Check if all required features are present
for feature in required_features:
if feature not in data:
return jsonify({
"error": f"Missing required feature: {feature}"
}), 400
# Create feature array in the correct order
features = np.array([[
data["MedInc"],
data["HouseAge"],
data["AveRooms"],
data["AveBedrms"],
data["Population"],
data["AveOccup"],
data["Latitude"],
data["Longitude"]
]])
# Scale features
scaled_features = scaler.transform(features)
# Make prediction
prediction = model.predict(scaled_features)
return jsonify({
"prediction": prediction[0] * 100000, # Convert to actual price in dollars
"features": data
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/train", methods=["POST"])
def train_model():
try:
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
import os
# Create model directory if it doesn't exist
os.makedirs("model", exist_ok=True)
# Load California housing dataset
housing = fetch_california_housing()
X = housing.data
y = housing.target
# Split the data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Scale the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train the model
model = LinearRegression()
model.fit(X_train_scaled, y_train)
# Evaluate the model
train_score = model.score(X_train_scaled, y_train)
test_score = model.score(X_test_scaled, y_test)
# Save the model and scaler
joblib.dump(model, MODEL_PATH)
joblib.dump(scaler, SCALER_PATH)
# Update the global model and scaler
globals()["model"] = model
globals()["scaler"] = scaler
return jsonify({
"message": "Model trained and saved successfully",
"train_score": train_score,
"test_score": test_score,
"feature_names": housing.feature_names
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/gpt", methods=["POST"])
def query_gpt():
try:
if client is None:
return jsonify({
"error": "OpenAI API key not configured. Please set the OPENAI_API_KEY environment variable."
}), 500
data = request.get_json()
if not data or "prompt" not in data:
return jsonify({"error": "Missing 'prompt' in request body"}), 400
prompt = data["prompt"]
system_message = data.get("system", "You are a helpful assistant.")
model_name = data.get("model", "gpt-4o-mini")
completion = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": prompt}
]
)
return jsonify({
"response": completion.choices[0].message.content,
"model": model_name
})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(debug=True, port=5000)