-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHandTrackingModule.py
83 lines (68 loc) · 3.01 KB
/
HandTrackingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
import mediapipe as mp
import time
class handDetector():
def __init__(self, mode=False, maxHands=2, detectionCon=0.5, trackCon=0.5):
# mode: Determines if the model is static or dynamic. Default is False (dynamic).
# maxHands: Maximum number of hands to detect. Default is 2.
# detectionCon: Minimum confidence for initial hand detection. Default is 0.5.
# trackCon: Minimum confidence for hand tracking. Default is 0.5.
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands,
min_detection_confidence=self.detectionCon,
min_tracking_confidence=self.trackCon)
self.mpDraw = mp.solutions.drawing_utils
def findHands(self, img, draw=True):
# Converts the image to RGB, processes it to find hand landmarks, and optionally draws them on the image.
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
# print(results.multi_hand_landmarks)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms,
self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo=0, draw=True,point=0):
# Retrieves and optionally draws the positions of landmarks for a specified hand and landmark index.
lmList = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
# print(id, lm)
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
# print(id, cx, cy)
lmList.append([id, cx, cy])
if (draw and id==point):
cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)
return lmList
def main():
#Captures video from the webcam, processes each frame to detect hands and landmarks, and displays the video with FPS.
pTime = 0
cTime = 0
cap = cv2.VideoCapture(0)
detector = handDetector()
while True:
success, img = cap.read()
img = cv2.flip(img,1)
img = detector.findHands(img)
lmList = detector.findPosition(img, draw=True,point=1)
if len(lmList) != 0:
print(lmList[4])
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3,(255, 0, 255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1) #1ms delay
if cv2.waitKey(1) & 0xFF == ord('q'): # Check if 'q' key is pressed
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()