Skip to content

Latest commit

 

History

History
108 lines (64 loc) · 2.56 KB

readme.md

File metadata and controls

108 lines (64 loc) · 2.56 KB

D-LinkNet For Road Extraction

TensorFlow implementation of D-LinkNet for road extraction.

Details can be found in this paper:

D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction

This model uses ResNet 50 provided by TensorFlow-Slim as encoder. See setting up section for more information.

Dataset is from DeepGlobe Road Extraction Challenge.

Requirements

  • Python 3.5
  • CUDA 9.0
  • TensorFlow 1.10

Setting Up

Before training this model, download net folder from https://github.com/tensorflow/models/tree/master/research/slim and place in the root directory of this project.

This contains necessary files to construct the Res50 model.

Usage

Train:

Run python ./train_slim_model.py

Options:

--data_dir=<path>

Path to training data.
Satellite images should have names like *sat*, labeled images should have names like *mask*.

--summary_dir=<path>

Save summary to specified path.
Default to `./summary/`

--save_dir=<path>

Save model to specified path.
By default the model will be saved under `<path>/model_<time_string>/`.
Default to `./model`.

--no_append

If set, model will be saved directly under `save_dir`. No sub directory will be made.

--resume_dir=<path>

If set, resume training the model from a previous checkpoint.

--CKPT_RES50=<path>

Path to ResNet 50 pre-trained model.
Default to `./pretrained-checkpoint/resnet_v1_50.ckpt1`.

--num_epoch=<int>

Specify number of epochs to train. Default to 16.

--partial_train

If set, parameters in Res50 model will not be updated.

Test:

Run python ./test_slim_model.py

Options:

--input_dir=<path>

Path to test files.
Satellite image files should have name like `_sat.*`.
Label images (if present) should have name like `_mask.*`.
If label images are present, iou and loss will be computed.

--output_dir=<path>

Path to save results.
If set, save prediction files to <path>.
Otherwise results will be saved to input_dir

--ckpt_dir=<path>

Path to saved model (checkpoint files).

--pb_dir=<path>

If set, load model from frozen graph. This option overrides `ckpt_dir`.

Generate Frozen Graph:

Run python ./freezer.py

Options:

--ckpt_dir=<path> Path to checkpoint files.