-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjoint_sampling.py
128 lines (100 loc) · 5.68 KB
/
joint_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache, BitsAndBytesConfig
import torch
import json
import argparse
import os
def joint_sampler(probs, n_total, model_indices, total_id2token, model_token2id, rng):
# sample Gumbels
u = torch.rand(n_total, generator=rng, device=probs.device)
gumbels = -torch.log(-torch.log(u + 1e-20) + 1e-20)
total_probs = torch.zeros(n_total, device=probs.device)
total_probs[model_indices] = probs
# add the gumbels
total_probs = torch.log(total_probs + 1e-20) + gumbels
# get the token with the highest gumbel-max
# NOTE: this restricts the argmax to the tokens that belong to the model's vocabulary
argmax = model_indices[torch.argmax(total_probs[model_indices], dim=-1)]
# map it back to the model's token ids
model_token_id = torch.tensor([[model_token2id[total_id2token[str(argmax.item())]]]], device=probs.device)
return model_token_id
def generate(model_name, user, cache_dir, vocab_dir, system, seed, temperature, max_length, quantize):
print("Reading the joint vocabulary...")
# read the id2token mapping
with open("/".join([vocab_dir, "id2token.json"])) as f:
total_id2token = json.load(f)
# read the token2id mapping
with open("/".join([vocab_dir, "token2id.json"])) as f:
total_token2id = json.load(f)
n_total = len(total_id2token) # total number of tokens in joint vocabulary
print("Loading the model and tokenizer...")
# load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
if quantize == 4:
print("Quantizing the model...")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir, device_map="cuda:0", quantization_config=quantization_config)
elif quantize == 8:
print("Quantizing the model...")
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir, device_map="cuda:0", quantization_config=quantization_config)
else:
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir, device_map="cuda:0")
# get the model's vocabulary
model_token2id = tokenizer.get_vocab()
model_id2token = {v: k for k, v in model_token2id.items()}
# find the indices of the joint vocabulary that correspond to the model's vocabulary
model_indices = torch.tensor([total_token2id[model_id2token[i]] for i in sorted(model_id2token.keys())], device=model.device)
# encode the input text as chat
chat = [
{"role": "system", "content": system},
{"role": "user", "content": user}
]
inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
# initialize the random number generator
rng = torch.Generator(device=model.device)
rng.manual_seed(seed)
# generate the response
eos_token_id = tokenizer.eos_token_id
past_key_values = DynamicCache()
cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device=model.device)
generated_ids = inputs.input_ids
query_length = inputs.input_ids.shape[1]
model.eval()
print("Generating response...")
with torch.no_grad():
for _ in range(max_length):
outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True)
logits = outputs.logits[:, -1, :len(model_token2id)]
probs = torch.nn.functional.softmax(logits / temperature, dim=-1, dtype=torch.float32)
# sample the next token using the Gumbel-Max SCM over the joint vocabulary
next_token_ids = joint_sampler(probs, n_total, model_indices, total_id2token, model_token2id, rng)
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
# NOTE: use caching to speed-up the autoregressive generation
# see https://huggingface.co/docs/transformers/kv_cache#under-the-hood-how-cache-object-works-in-attention-mechanism
attention_mask = inputs["attention_mask"]
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask}
cache_position = cache_position[-1:] + 1 # add one more position for the next token
if next_token_ids.item() == eos_token_id:
break
# get the generated response (after the generation prompt token)
response_tokens = generated_ids[0, query_length:]
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
print("Response: ", response)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
parser.add_argument("--user", type=str, required=True, help="User prompt")
parser.add_argument("--cache_dir", type=str, default="./models", help="Directory that contains model files")
parser.add_argument("--vocab_dir", type=str, default="./models", help="Directory that contains files for the joint vocabulary")
parser.add_argument("--system", type=str, default="Keep your responses short and to the point.", help="System prompt")
parser.add_argument("--seed", type=int, default=42, help="Seed for reproducibility")
parser.add_argument("--temperature", type=float, default=0.7, help="Softmax temperature")
parser.add_argument("--max_length", type=int, default=1000, help="Maximum length of the generated response")
parser.add_argument("--quantize", type=int, choices=[0,4,8], default=0, help="Choose quantization method (if any) the model")
args = parser.parse_args()
generate(**vars(args))