-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathclean.py
414 lines (340 loc) · 15.3 KB
/
clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
"""
Nipype workflow to clean up resting-state functional MRI.
"""
import os
import nipype.pipeline.engine as pe
from nipype.algorithms.misc import Gunzip
from nipype.interfaces import fsl
from nipype.interfaces.nipy.preprocess import Trim, ComputeMask
from nipype.interfaces.utility import Function, Select, IdentityInterface
from neuro_pypes._utils import format_pair_list, flatten_list
from neuro_pypes.config import setup_node, get_config_setting
from neuro_pypes.fmri.filter import bandpass_filter
from neuro_pypes.fmri.nuisance import rest_noise_filter_wf
from neuro_pypes.interfaces.nilearn import mean_img, smooth_img
from neuro_pypes.preproc import (auto_spm_slicetime,
nipy_motion_correction,
spm_coregister)
from neuro_pypes.utils import (remove_ext,
extend_trait_list,
get_input_node,
get_interface_node,
get_datasink,
get_input_file_name,
extension_duplicates)
def fmri_cleanup_wf(wf_name="fmri_cleanup"):
""" Run the resting-state fMRI pre-processing workflow against the rest files in `data_dir`.
Tasks:
- Trim first 6 volumes of the rs-fMRI file.
- Slice Timing correction.
- Motion and nuisance correction.
- Calculate brain mask in fMRI space.
- Bandpass frequency filtering for resting-state fMRI.
- Smoothing.
- Tissue maps co-registration to fMRI space.
Parameters
----------
wf_name: str
Nipype Inputs
-------------
rest_input.in_file: traits.File
The resting-state fMRI file.
rest_input.anat: traits.File
Path to the high-contrast anatomical image.
rest_input.tissues: list of traits.File
Paths to the tissue segmentations in anatomical space.
Expected to have this order: GM, WM and CSF.
rest_input.highpass_sigma:traits.Float
Band pass timeseries filter higher bound in Hz.
rest_input.lowpass_sigma: traits.Float
Band pass timeseries filter lower bound in Hz.
Nipype Outputs
--------------
rest_output.smooth: traits.File
The isotropically smoothed time filtered nuisance corrected image.
rest_output.nuis_corrected: traits.File
The nuisance corrected fMRI file.
rest_output.motion_params: traits.File
The affine transformation file.
rest_output.time_filtered: traits.File
The bandpass time filtered fMRI file.
rest_output.epi_brain_mask: traits.File
An estimated brain mask from mean EPI volume.
rest_output.tissues_brain_mask: traits.File
A brain mask calculated from the addition of coregistered
GM, WM and CSF segmentation volumes from the anatomical
segmentation.
rest_output.tissues: list of traits.File
The tissues segmentation volume in fMRI space.
Expected to have this order: GM, WM and CSF.
rest_output.anat: traits.File
The T1w image in fMRI space.
rest_output.avg_epi: traits.File
The average EPI image in fMRI space after slice-time and motion correction.
rest_output.motion_regressors: traits.File
rest_output.compcor_regressors: traits.File
rest_output.art_displacement_files
One image file containing the voxel-displacement timeseries.
rest_output.art_intensity_files
One file containing the global intensity values determined from the brainmask.
rest_output.art_norm_files
One file containing the composite norm.
rest_output.art_outlier_files
One file containing a list of 0-based indices corresponding to outlier volumes.
rest_output.art_plot_files
One image file containing the detected outliers.
rest_output.art_statistic_files
One file containing information about the different types of artifacts and if de#fo is provided then
details of stimulus correlated motion and a listing or artifacts by event type.
Returns
-------
wf: nipype Workflow
"""
# Create the workflow object
wf = pe.Workflow(name=wf_name)
# specify input and output fields
in_fields = [
"in_file",
"anat",
"atlas_anat",
"coreg_target",
"tissues",
"lowpass_freq",
"highpass_freq",
]
out_fields = [
"motion_corrected",
"motion_params",
"tissues",
"anat",
"avg_epi",
"time_filtered",
"smooth",
"tsnr_file",
"epi_brain_mask",
"tissues_brain_mask",
"motion_regressors",
"compcor_regressors",
"gsr_regressors",
"nuis_corrected",
"art_displacement_files",
"art_intensity_files",
"art_norm_files",
"art_outlier_files",
"art_plot_files",
"art_statistic_files",
]
# input identities
rest_input = setup_node(IdentityInterface(fields=in_fields, mandatory_inputs=True),
name="rest_input")
# rs-fMRI preprocessing nodes
trim = setup_node(Trim(), name="trim")
stc_wf = auto_spm_slicetime()
realign = setup_node(nipy_motion_correction(), name='realign')
# average
average = setup_node(
Function(
function=mean_img,
input_names=["in_file"],
output_names=["out_file"],
imports=['from neuro_pypes.interfaces.nilearn import ni2file']
),
name='average_epi'
)
mean_gunzip = setup_node(Gunzip(), name="mean_gunzip")
# co-registration nodes
coreg = setup_node(spm_coregister(cost_function="mi"), name="coreg_fmri")
brain_sel = setup_node(Select(index=[0, 1, 2]), name="brain_sel")
# brain mask made with EPI
epi_mask = setup_node(ComputeMask(), name='epi_mask')
# brain mask made with the merge of the tissue segmentations
tissue_mask = setup_node(fsl.MultiImageMaths(), name='tissue_mask')
tissue_mask.inputs.op_string = "-add %s -add %s -abs -kernel gauss 4 -dilM -ero -kernel gauss 1 -dilM -bin"
tissue_mask.inputs.out_file = "tissue_brain_mask.nii.gz"
# select tissues
gm_select = setup_node(Select(index=[0]), name="gm_sel")
wmcsf_select = setup_node(Select(index=[1, 2]), name="wmcsf_sel")
# noise filter
noise_wf = rest_noise_filter_wf()
wm_select = setup_node(Select(index=[1]), name="wm_sel")
csf_select = setup_node(Select(index=[2]), name="csf_sel")
# bandpass filtering
bandpass = setup_node(
Function(
input_names=['files', 'lowpass_freq', 'highpass_freq', 'tr'],
output_names=['out_files'],
function=bandpass_filter
),
name='bandpass'
)
# smooth
smooth = setup_node(
Function(
function=smooth_img,
input_names=["in_file", "fwhm"],
output_names=["out_file"],
imports=['from neuro_pypes.interfaces.nilearn import ni2file']
),
name="smooth"
)
smooth.inputs.fwhm = get_config_setting('fmri_smooth.fwhm', default=8)
smooth.inputs.out_file = "smooth_std_{}.nii.gz".format(wf_name)
# output identities
rest_output = setup_node(IdentityInterface(fields=out_fields), name="rest_output")
# Connect the nodes
wf.connect([
# trim
(rest_input, trim, [("in_file", "in_file")]),
# slice time correction
(trim, stc_wf, [("out_file", "stc_input.in_file")]),
# motion correction
(stc_wf, realign, [("stc_output.timecorrected_files", "in_file")]),
# coregistration target
(realign, average, [("out_file", "in_file")]),
(average, mean_gunzip, [("out_file", "in_file")]),
(mean_gunzip, coreg, [("out_file", "target")]),
# epi brain mask
(average, epi_mask, [("out_file", "mean_volume")]),
# coregistration
(rest_input, coreg, [("anat", "source")]),
(rest_input, brain_sel, [("tissues", "inlist")]),
(brain_sel, coreg, [(("out", flatten_list), "apply_to_files")]),
# tissue brain mask
(coreg, gm_select, [("coregistered_files", "inlist")]),
(coreg, wmcsf_select, [("coregistered_files", "inlist")]),
(gm_select, tissue_mask, [(("out", flatten_list), "in_file")]),
(wmcsf_select, tissue_mask, [(("out", flatten_list), "operand_files")]),
# nuisance correction
(coreg, wm_select, [("coregistered_files", "inlist",)]),
(coreg, csf_select, [("coregistered_files", "inlist",)]),
(realign, noise_wf, [("out_file", "rest_noise_input.in_file",)]),
(tissue_mask, noise_wf, [("out_file", "rest_noise_input.brain_mask")]),
(wm_select, noise_wf, [(("out", flatten_list), "rest_noise_input.wm_mask")]),
(csf_select, noise_wf, [(("out", flatten_list), "rest_noise_input.csf_mask")]),
(realign, noise_wf, [("par_file", "rest_noise_input.motion_params",)]),
# temporal filtering
(noise_wf, bandpass, [("rest_noise_output.nuis_corrected", "files")]),
# (realign, bandpass, [("out_file", "files")]),
(stc_wf, bandpass, [("stc_output.time_repetition", "tr")]),
(rest_input, bandpass, [
("lowpass_freq", "lowpass_freq"),
("highpass_freq", "highpass_freq"),
]),
(bandpass, smooth, [("out_files", "in_file")]),
# output
(epi_mask, rest_output, [("brain_mask", "epi_brain_mask")]),
(tissue_mask, rest_output, [("out_file", "tissues_brain_mask")]),
(realign, rest_output, [
("out_file", "motion_corrected"),
("par_file", "motion_params"),
]),
(coreg, rest_output, [
("coregistered_files", "tissues"),
("coregistered_source", "anat"),
]),
(noise_wf, rest_output, [
("rest_noise_output.motion_regressors", "motion_regressors"),
("rest_noise_output.compcor_regressors", "compcor_regressors"),
("rest_noise_output.gsr_regressors", "gsr_regressors"),
("rest_noise_output.nuis_corrected", "nuis_corrected"),
("rest_noise_output.tsnr_file", "tsnr_file"),
("rest_noise_output.art_displacement_files", "art_displacement_files"),
("rest_noise_output.art_intensity_files", "art_intensity_files"),
("rest_noise_output.art_norm_files", "art_norm_files"),
("rest_noise_output.art_outlier_files", "art_outlier_files"),
("rest_noise_output.art_plot_files", "art_plot_files"),
("rest_noise_output.art_statistic_files", "art_statistic_files"),
]),
(average, rest_output, [("out_file", "avg_epi")]),
(bandpass, rest_output, [("out_files", "time_filtered")]),
(smooth, rest_output, [("out_file", "smooth")]),
])
return wf
def attach_fmri_cleanup_wf(main_wf, wf_name="fmri_cleanup"):
""" Attach the resting-state MRI pre-processing workflow to the `main_wf`.
Parameters
----------
main_wf: nipype Workflow
wf_name: str
Name of the registration workflow.
Nipype Inputs for `main_wf`
---------------------------
Note: The `main_wf` workflow is expected to have an `input_files` and a `datasink` nodes.
input_files.select.anat: input node
datasink: nipype Node
Returns
-------
main_wf: nipype Workflow
"""
# Dependency workflows
in_files = get_input_node(main_wf)
datasink = get_datasink(main_wf)
anat_output = get_interface_node(main_wf, "anat_output")
# create the fMRI preprocessing pipelines
cleanup_wf = fmri_cleanup_wf(wf_name)
# dataSink output substitutions
# The base name of the 'rest' file for the substitutions
rest_fbasename = remove_ext(os.path.basename(get_input_file_name(in_files, 'rest')))
anat_fbasename = remove_ext(os.path.basename(get_input_file_name(in_files, 'anat')))
regexp_subst = [
(r"/rc1[\w]+_corrected\.nii$", "/gm_{rest}.nii"),
(r"/rc2[\w]+_corrected\.nii$", "/wm_{rest}.nii"),
(r"/rc3[\w]+_corrected\.nii$", "/csf_{rest}.nii"),
(r"/rm[\w]+_corrected\.nii$", "/{anat}_{rest}.nii"),
(r"/corr_stc{rest}_trim\.nii$", "/slice_time_corrected.nii"),
(r"/stc{rest}_trim\.nii\.par$", "/motion_parameters.txt"),
(r"/corr_stc{rest}_trim_filt\.nii$", "/time_filt.nii"),
(r"/corr_stc{rest}_trim_mean_mask\.\.nii$", "/epi_brain_mask_{rest}.nii"),
(r"/tissue_brain_mask\.nii$", "/tissue_brain_mask_{rest}.nii"),
(r"/corr_stc{rest}_trim_mean\.nii$", "/avg_epi.nii"),
(r"/art\..*_outliers\.txt$", "/artifact_outliers.txt"),
(r"/global_intensity\..*\.txt$", "/global_intensities.txt"),
(r"/norm\..*_outliers\.txt$", "/motion_norms.txt"),
(r"/stats\..*\.txt$", "/motion_stats.json"),
(r"/plot\..*\.png$", "/artifact_plots.png"),
(r"/corr_stc{rest}_trim_filtermotart\.nii$", "/{rest}_motion_corrected.nii"),
(r"/corr_stc{rest}_trim_filtermotart[\w_]*_cleaned\.nii$", "/{rest}_nuisance_corrected.nii"),
(r"/corr_stc{rest}_trim_filtermotart[\w_]*_gsr\.nii$", "/{rest}_nuisance_corrected.nii"),
(r"/corr_stc{rest}_trim_filtermotart[\w_]*_bandpassed\.nii$", "/{rest}_time_filtered.nii"),
(r"/corr_stc{rest}_trim_filtermotart[\w_]*_smooth\.nii$", "/{rest}_smooth.nii"),
]
regexp_subst = format_pair_list(regexp_subst, rest=rest_fbasename, anat=anat_fbasename)
regexp_subst += extension_duplicates(regexp_subst)
datasink.inputs.regexp_substitutions = extend_trait_list(
datasink.inputs.regexp_substitutions,
regexp_subst
)
# input and output anat workflow to main workflow connections
main_wf.connect([
(in_files, cleanup_wf, [("rest", "rest_input.in_file")]),
# anat to fMRI registration inputs
(anat_output, cleanup_wf, [
("tissues_native", "rest_input.tissues"),
("anat_biascorr", "rest_input.anat"),
]),
# clean_up_wf to datasink
(cleanup_wf, datasink, [
("rest_output.epi_brain_mask", "rest.@epi_brain_mask"),
("rest_output.tissues_brain_mask", "rest.@tissues_brain_mask"),
("rest_output.tissues", "rest.@tissues"),
("rest_output.anat", "rest.@anat"),
("rest_output.motion_regressors", "rest.@motion_regressors"),
("rest_output.compcor_regressors", "rest.@compcor_regressors"),
("rest_output.gsr_regressors", "rest.@gsr_regressors"),
("rest_output.motion_params", "rest.@motion_params"),
("rest_output.motion_corrected", "rest.@motion_corrected"),
("rest_output.nuis_corrected", "rest.@nuis_corrected"),
("rest_output.time_filtered", "rest.@time_filtered"),
("rest_output.smooth", "rest.@smooth"),
("rest_output.avg_epi", "rest.@avg_epi"),
("rest_output.tsnr_file", "rest.@tsnr"),
("rest_output.art_displacement_files", "rest.artifact_stats.@displacement"),
("rest_output.art_intensity_files", "rest.artifact_stats.@art_intensity"),
("rest_output.art_norm_files", "rest.artifact_stats.@art_norm"),
("rest_output.art_outlier_files", "rest.artifact_stats.@art_outlier"),
("rest_output.art_plot_files", "rest.artifact_stats.@art_plot"),
("rest_output.art_statistic_files", "rest.artifact_stats.@art_statistic"),
]),
])
return main_wf