-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_rep_barchart_tumor.py
65 lines (54 loc) · 2.28 KB
/
vis_rep_barchart_tumor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import matplotlib.pyplot as plt
import numpy as np
tumor_types = ["Total", "Lung", "Liver", "Pancreas", "Ovary", "Stomach", "Kidney", "Colorectal", "Breast", "Esophagus"]
methods = ["knn", "lr", "svm", "rf", "might"]
# data
mean_values = [
[0.241, 0.56, 0.31, 0.24, 0.26, 0.085, 0.09, 0.18, 0.13, 0.2], # knn
[0.339, 0.48, 0.51, 0.3, 0.48, 0.2, 0.16, 0.23, 0.17, 0.36], # lr
[0.465, 0.72, 0.67, 0.5, 0.6, 0.32, 0.2, 0.24, 0.24, 0.72], # svm
[0.398, 0.73, 0.6, 0.42, 0.47, 0.29, 0.22, 0.19, 0.21, 0.69], # rf
[0.309, 0.66, 0.4, 0.33, 0.36, 0.26, 0.15, 0.1, 0.16, 0.38] # might
]
variance_values = [
[0.001, 0.0022, 0.0036, 0.00075, 0.0015, 0.00028, 0.0005, 0.0007, 0.00038, 0.0079], # knn
[0.0007, 0.003, 0.0018, 0.0011, 0.00058, 0.0015, 0.001, 0.00074, 0.00082, 0.021], # lr
[0.0009, 0.00039, 0.0021, 0.0012, 0.00089, 0.0025, 0.0013, 0.00039, 0.00086, 0.0074], # svm
[0.0007, 0.00022, 0.0018, 0.00061, 0.00095, 0.0013, 0.0022, 0.00028, 0.00059, 0.01], # rf
[3e-05, 0.00011, 0.00085, 0.00015, 0.00012, 0.0012, 0.00019, 1.7e-05, 6.6e-05, 0.0029] # might
]
# (deviation)
deviation_values = [[np.sqrt(v) for v in row] for row in variance_values]
# set up plot
x = np.arange(len(tumor_types)) # the label locations
width = 0.15
fig, ax = plt.subplots(figsize=(12, 8))
# plot bars
colors = ['b', 'g', 'r', 'orange', 'purple'] # colors for the bars
for i, (method, mean, deviation) in enumerate(zip(methods, mean_values, deviation_values)):
ax.bar(
x + i * width - (width * len(methods) / 2), # shift the bars
mean,
width,
yerr=deviation, # add deviation bars
label=method,
color=colors[i],
alpha=0.8,
capsize=5
)
# set labels
# ax.set_xlabel("Tumor Types", fontsize=24)
ax.set_ylabel("Mean ± Deviation", fontsize=24)
ax.set_title("Model Performance(S@98) Across Tumor Types", fontsize=26)
ax.set_xticks(x)
ax.set_xticklabels(tumor_types, rotation=60, ha="right", fontsize=20)
ax.legend(title="Methods", fontsize=20, title_fontsize=20, loc="upper left")
# show grid
ax.grid(alpha=0.3)
# save the plot
ouput_dir = "./Outcome"
output_file = f"{ouput_dir}/model_performance_across_tumor_types.png"
plt.tight_layout()
plt.savefig(output_file, dpi=300)
plt.close()
print(f"Bar chart saved at: {output_file}")