
This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

1 of 60

OPEN_NEXT

Deliverable 3.2

Annexure: Platform Demonstrator for collaborative

engineering

This project is funded by the European Union’s Horizon 2020 Research and Innovation Programme

under the Grand Agreement no. 869984.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

2 of 60

OPEN_NEXT – Transforming collaborative product creation
Consortium:

Participant Legal Name Short Name Country

1 TECHNISCHE UNIVERSITAT BERLIN TUB DE

2 INSTITUT POLYTECHNIQUE DE GRENOBLE GINP FR

3 ALEXANDER VON HUMBOLDT-INSTITUT FURINTERNET UND
GESELLSCHAFT GGMBH

HIIG DE

4 UNIVERSITY OF BATH UBA UK

5 ZENTRUM FUR SOZIALE INNOVATION GMBH ZSI AT

6 FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG E.V.

FHG DE

7 DANSK DESIGN CENTER APS DDC DK

8 WIKIMEDIA DEUTSCHLAND - GESELLSCHAFT ZUR FÖRDERUNG
FREIEN WISSENS EV

WMDE DE

9 WIKIFACTORY EUROPE SL WIF ES

10 STICHTING WAAG SOCIETY WAAG NL

11 MAKER MAK DK

12 AGILE HEAP EV FLB DE

13 SONO MOTORS GMBH SOM DE

14 OPNTEC GMBH OPT DE

15 STYKKA APS STY DK

16 TILL WOLFER XYZC DE

17 FICTION FACTORY FIF NL

18 M2M4ALL SOD NL

19 INNOC OSTERREICHISCHE GESELLSCHAFT FUR INNOVATIVE
COMPUTERWISSENSCHAFTEN

HAL AT

Duration: 09/2019-08/2022

Grant: H2020-869984

Contact (coordinator): Prof Dr-Ing Roland JOCHEM

Address: Technische Universität Berlin, Sekretariat PTZ 3, Pascalstr. 8-9, 10587 Berlin
E-mail: roland.jochem@tu-berlin.de

Disclaimer: The contents of this document are not intended to replace consultation of any

applicable legal sources or the necessary advice of a legal expert, where appropriate. All information

in this document is provided "as is" and no guarantee or warranty is given that the information is fit

for any particular purpose. The user, therefore, uses the information at his/her sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document,

which is merely representing the views of the author(s).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:roland.jochem@tu-berlin.de

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

3 of 60

D3.2 – “Annexure: Platform demonstrator for collaborative
engineering”
Review and approval status:

 Name and Surname Role in the Project Partner

Author(s) Sonika Gogineni, Martin Häuer Work Package lead,
Research Assistant

FHG

 Erik Paul Konietzko, Cansu
Tanrikulu

Work package
development,

Student Assistant

FHG

 Max Kanpik, Diego Vaquero,
Andrés Barreiro

Work package
development

WIF

Reviewed by Mehera Hassan Research Associate TUB

 Pen-Yuan Hsing Postdoctoral Researcher UBA

Approved by Robert Mies Project coordinator TUB

History of changes:

Version Date Description of changes By

0.1 21.06.2021 Initial draft Sonika Gogineni

0.2 30.07.2021 Draft for review Sonika Gogineni

1.0 26.08.2021 Final document for final
project management

verification

Sonika Gogineni, Erik
Konietzko

Details:

Dissemination level Open Access

Due date 31.08.2021

Issue date 31.08.2021

Contract No. 869984

Responsible Partner FHG

File name D3.2_ Annexure_ Platform Demonstrator for collaborative
engineering.docx

Keywords:

Open source hardware, ICT for OSH, open source development, community management, skill

ontology, interoperability, collaborative production, guidelines, and documentation

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

4 of 60

Abstract:

This is a supporting document, which provides details about why and how the solutions were
selected and developed. In addition, the solutions are enhanced with design notes and installation
guide. The design notes provide insights into the structure of the solutions, and the installation
guides provides a step-by-step description on how to install and use the solutions.

The solutions are the various demonstrators and software tools developed to support company-
community collaboration in Open Source Hardware projects. Fraunhofer IPK and Wikifactory have
carried out the developments. Based on the prioritized needs of the target group a set of concepts
(referred to as solutions in the deliverable) were developed to address the needs. This led to the
development of solutions under four main categories namely: community management,
interoperability, collaborative production, and documentation and guidelines. The target groups
identified for the solutions are companies, communities and platform owners/ creators.

Under community management, the focus was on matchmaking the company and community with
skills and interests as the common connector. A first version of the solution as a demonstrator
integrated in Wikifactory is presented in this deliverable.

Under the category interoperability, a stable version of an import-export tool was developed to
facilitate transfer of files from one platform to another. Hence, providing the community and
company to move the projects across platforms without facing a vendor lock-in.

Under the category of collaborative production, in order to assist a company/community member
looking for producers/prototype manufacturers a first prototype of a matchmaking tool was
developed on Wikifactory. The first step was to identify production metadata required to ensure a
seamless communication, followed by automatically identifying metadata in project text and then
finding suitable collaborations.

Under the category documentation and guidelines, four different templates and guides were
developed to assist companies and contributors.

All the results represent a first release, which need to be validated and further developed during
the course of the project.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

5 of 60

Table of contents
1. Introduction ... 9

1.1. User story prioritization process ... 9

2. Import-Export Tool ... 12

2.1. Development method ... 12

2.2. Design notes .. 12

2.2.1. Management of authentication tokens .. 14

3. Skill ontology demonstrator .. 15

3.1. Development method ... 15

3.1.1. User flows .. 15

3.1.2. Semantic network.. 17

3.2. Design notes .. 20

3.2.1. Class diagram ... 20

3.2.2. Flow instantiation .. 22

3.3. Installation ... 30

3.4. Ontologies ... 38

3.4.1. Resource Description Framework and Web Ontology Language 38

3.4.2. OWL documents .. 39

4. Collaborative Production – Identifying production metadata ... 43

4.1. Development method ... 43

4.2. Design notes .. 43

5. Collaborative Production – Identifying production metadata in documentation through

machine learning .. 45

5.1. Development Method ... 45

5.2. Design notes .. 52

5.3. Installation guide ... 54

6. Documentation and Guidelines – Project overview template ... 57

6.1. Development method and design notes ... 57

7. Documentation and Guidelines -Technology-readiness levels for OSH 57

7.1. Development method and design notes ... 57

8. Documentation and Guidelines - Licensing open source hardware guide 59

8.1. Development method ... 59

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

6 of 60

List of abbreviations and terms

API Application programming interface
ESCO European Skills/Competences, qualifications and Occupations
IDE Integrated development environment
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
NASA National Aeronautics and Space Administration
NER Named Entity Recognition
NLP Natural Language Processing
ODRL Open Documentation Readiness Levels
OSD Open source development
OSH Open source hardware
OSS Open source software
OTRL Open Technology Readiness Levels
OWL Web Ontology Language
RDF Resource Description Framework
TRL Technology Readiness Level
URL Universal resource locator

List of figures
Figure 1: Definitions with their relationships .. 8

Figure 2: Flowchart of the Import Export steps. In purple appear the high-level steps of the process.

Success statuses appears in green while error status appears in yellow and red 13

Figure 3: Database log for a successful import-export job ... 13

Figure 4: Database log for an import-export job that required user authentication 14

Figure 5: Workshop with OPEN_NEXT project members to find and prioritize user flows 16

Figure 6: Ontology classes for the user story application ... 17

Figure 7: Collaborative process map (Mies 2021) ... 18

Figure 8: Typological project types (Mies 2021) ... 18

Figure 9: Demonstrator class structure ... 20

Figure 10: Skill instantiation flow .. 23

Figure 11: Flowchart Instantiation (1/2) ... 25

Figure 12: Flowchart Instantiation (2/2) ... 26

Figure 13: Query execution flow ... 29

Figure 14: Coping the link of the GitHub repository page .. 31

Figure 15: Starting Eclipse and choosing a workspace .. 32

Figure 16: Setting the SSH2 key in the preferences .. 32

Figure 17: Open Git perspective in Eclipse (1/2) ... 33

Figure 18: Open Git perspective in Eclipse (2/2) ... 33

Figure 19: Clone a Git repository from the Git repositories tab ... 33

Figure 20: Inserting the repository URI to clone ... 34

Figure 21: Selection the branch to clone .. 34

Figure 22: Choosing a local directory for the git repository .. 35

Figure 23: Importing existing Maven project .. 35

Figure 24: Choosing root directory.. 36

Figure 25: Imported project in the project explorer tab ... 36

Figure 26: Setting JAVA Compiler level ... 37

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

7 of 60

Figure 27: Agreeing to the project build ... 37

Figure 28: JUnit import error ... 37

Figure 29: Adding JUnit library .. 38

Figure 30: Instantiation example... 39

Figure 31: Ontology header ... 40

Figure 32: Declaration axioms for (a) Class Project (b) object property has_member (c) data proerty

Project_title ... 40

Figure 33: Declaration axiom for (a) individual CAD_file (b) annotation property wif_issue_1_cmap 40

Figure 34: Axioms to set (a) subclass relation and (b) disjointness of classes 40

Figure 35: Classifying an individual ... 40

Figure 36: Defining inverse properties .. 41

Figure 37: Axioms defining the (a) domain and (b) range of a property... 41

Figure 38: Defining the annotation property wif_issue_1_cmap ... 41

Figure 39: Property restriction on class Creator ... 41

Figure 40: Provision of production metadata by publishing a plain text file („manifest file “) in a git

repository .. 44

Figure 41: Example of the training data .. 46

Figure 42: Login for doccano ... 47

Figure 43: Creating a project in doccano .. 48

Figure 44: Importing a dataset for doccano .. 48

Figure 45: Creating labels in doccano ... 49

Figure 46: Imported dataset in doccano ... 50

Figure 47: Reading labelled dataset .. 50

Figure 48: Converting the format .. 51

Figure 49: Training the model ... 51

Figure 50: Iterations through training ... 52

Figure 51: Saving the model .. 52

Figure 52: Testing the model ... 52

Figure 53: Flowchart of steps to recreate a NER ... 53

Figure 54: Copying the URL of the repository ... 54

Figure 55: Create Git Repository ... 54

Figure 56: Clone the URL ... 55

Figure 57: The cloned repository in IDE .. 55

Figure 58: Front end of the application ... 56

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

8 of 60

List of definitions

Company: An organisation or entity
Community: A community is a group of people or organisations. They can take up different

roles in projects. Some of them works on projects online using online
platforms to carry out certain tasks (Dai et al.).

Community member: Community member is described as anyone who is interested in projects or
other users for example on an online platform. They can duplicate the project
without any contribution for their own purpose. (Li und Seering).

Project team: An open source project team consists of the core team and contributors (Dai
et al.)

Core team: Core team usually builds and manages the backbone of project, they
usually are responsible for major decisions. They are a part of the project
team.

Contributor: From community members, the ones who are interested and contributing in
a project, called contributors (Dai et al.)

The above definitions are further illustrated in Figure 1.

Figure 1: Definitions with their relationships

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

9 of 60

1. Introduction
This document acts as a supporting annexure to the main document (D3.2_ Platform demonstrator -

Collaborative engineering platform demonstrator). The document mainly focuses on detailing the

methodology used to develop the solutions, supporting deign notes and installation guides.

Following the results of the previous deliverable D3.1, there was a need to prioritize the needs/user

stories identified. Hence, a prioritization process was carried out. The methodology used to do this is

detailed in the following section.

1.1. User story prioritization process
For the prioritization of the user story groups the weighted average was calculated, taking the
quantities of mentions and user stories into account (cf. Equation 1). The average was calculated for
both within and among the groups, and for each user story individually, in order to provide as
heterogeneous a picture as possible.

Equation 1

𝑥𝑤,𝑖 =
𝑤𝑖,𝑢𝑠𝑒𝑟𝑥𝑖,𝑢𝑠𝑒𝑟 +𝑤𝑖,𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑥𝑖,𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠

𝑤𝑖,𝑢𝑠𝑒𝑟 +𝑤𝑖,𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠

𝑥𝑖,𝑤 = weighted average of user story group i
𝑤𝑖 = weight factor (of user story or mentions) in user story group i
𝑥𝑖 = realisation of quantity (of user story or mentions) in user story group i

Table 1: User story group prioritisation statistics

Group # User story group
user
stories

mentions
% user
stories

% mentions Summary Ranking

1 Community management 9 66 11.25% 25.38% 18.32% 1

2 Company community management 2 2 2.50% 0.77% 1.63%

3 Documentation 9 25 11.25% 9.62% 10.43% 4

4 Informal Knowledge documentation 2 2 2.50% 0.77% 1.63%

5 Interoperability 3 13 3.75% 5.00% 4.38%

6 Collaborative Production 5 14 6.25% 5.38% 5.82%

7 Status 1 9 1.25% 3.46% 2.36%

8 Quality 2 4 2.50% 1.54% 2.02%

9 Business Model 2 8 2.50% 3.08% 2.79%

10 Certification 3 3 3.75% 1.15% 2.45%

11 Liability 1 3 1.25% 1.15% 1.20%

12 Guidelines 11 38 13.75% 14.62% 14.18% 2

13 Collaborative Product development 8 22 10.00% 8.46% 9.23%

14 Development platform 10 26 12.50% 10.00% 11.25% 3

15 Collaborative project management 1 2 1.25% 0.77% 1.01%

16 Community maintained project 1 3 1.25% 1.15% 1.20%

17 Fablab/Makerspace 5 10 6.25% 3.85% 5.05%

18 Discoverability 1 4 1.25% 1.54% 1.39%

19 Collaborative Testing 2 4 2.50% 1.54% 2.02%

20 Standards 2 2 2.50% 0.77% 1.63%

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

10 of 60

  Sum 80 260 100% 100.00% 100.00%

  Weight user story 1   75% quantile

  Weight mentions 1   +   50% quantile

This method was selected to contrast and level the influence of many, but less-mentioned user stories
in a group with the influence of few, but often-mentioned user stories in a group. The following
classification was selected as a gradation of the user stories in the evaluation:

• high evaluation: make up the area above the top quartile in an ordered frequency table,
• medium evaluation: make up the area between the middle and top quartile in an ordered
frequency table.

Areas below the middle quartile were not considered further due to the high number of user stories
for the first iteration of the selection. The average was calculated both within and among the groups,
and for each user story alone. It turned out that the weighting (number of mentions vs. number of user
stories) had a rather small influence in the area of the groups with high priority anyway, which
confirmed that groups that were often mentioned (in the table e.g. community management) also
contained the user stories with high mentions. This insight simplified the selection process based on
the pure numbers of the surveys. Based on these, user story groups with high and medium ratings
were selected for the further path. These are marked in the table with green (high) and yellow
(medium).

The results from WP2 from the interviews conducted from the GINP was also assessed and mapped to

the user stories and the categories. The ranking from above analysis and the results from the analysis

from WP2 are compared in Table 2.

Table 2: User story group prioritization in comparison with interview results from WP2

Group # User story group
user
stories

mentions Ranking
needs from
WP2

Ranking WP2

1 Community management 9 66 1 15 4

2 Company community management 2 2 1

3 Documentation 9 25 4 53 1

4 Informal Knowledge documentation 2 2 3

5 Interoperability 3 13 2

6 Collaborative Production 5 14 3

7 Status 1 9 5

8 Quality 2 4 4

9 Business Model 2 8 2

10 Certification 3 3 2

11 Liability 1 3 1

12 Guidelines 11 38 2 16 3

13 Collaborative Product development 8 22 9

14 Development platform 10 26 3 24 2

15 Collaborative project management 1 2 1

16 Community maintained project 1 3 1

17 Fablab/Makerspace 5 10 5

18 Discoverability 1 4 2

19 Collaborative Testing 2 4 2

20 Standards 2 2 2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

11 of 60

The number of needs from WP2 was calculated by assigning the identified needs from GINP into the

20 categories. The table indicates that the top 4 categories with prioritized needs are community

management, documentation, guidelines and development platform. The focus of the interviews from

GINP was on reuse of documentation, hence this could have made the difference in the order of

ranking among the four categories compared to the user stories ranking (from D3.1).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

12 of 60

2. Import-Export Tool

2.1. Development method
The Import Export service has been developed based into three main principles. First, it must facilitate

the operation of importing files from the import service (i.e., download them) and exporting those files

to the exporting service (i.e., upload them). Second, it must be flexible enough to incorporate as many

services as possible for both operations, importing and exporting. Third, it should be usable from the

endpoint users as well as allowing its execution from external services.

With these three pillars it was decided to develop the Import Export tool as a microservice. Thus, the

service has some benefits such as being easily and independently deployable, easy to extend and

manipulate and keeping all the functionality gathered up.

2.2. Design notes

Figure 2 shows all the import export process in a flowchart. The initial point of the diagram is the “Start
I/E process”, which represent the start of a new import-export job.

Once the job has started, the service tries to import (i.e., download) the files from the import service.
There are two possibilities in this step, either the importer finds some error while downloading the
files, or the whole import step finishes successfully.

If an error was found while importing, the service checks if this is the first time that the job has been
executed or not. If this is the first iteration of the job, the service sets the job status as
“IMPORTING_ERROR_AUTHORIZATION_REQUIRED”, which indicates that it is waiting for the user to
retry again the process but providing different credentials. Otherwise, when this is not the first
iteration of the job, that “AUTHORIZATION_REQUIRED” status will already be present in the database.
By default, the service assumes that if the user provided credentials to access the import_url and there
was an error, either the user does not have access to those files, or the URL is not reachable. In that
case, the “IMPORTING_STATUS_DATA_UNREACHABLE” will be set.

After finished downloading the files, the status of the job will be “IMPORTING_SUCCESSFULLY” and
then, the exporting step begins which is analogous to the importing one but changing the status names
to “EXPORTING”. Finally, once both, importing and exporting steps have finished, the whole job will be
marked as finished by setting its status to “FINISHED_SUCCESSFULLY”.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

13 of 60

Figure 2: Flowchart of the Import Export steps. In purple appear the high-level steps of the process. Success statuses appears
in green while error status appears in yellow and red

For example, Figure 3 shows the entries in the database for a successful execution of the import-export

process.

Figure 3: Database log for a successful import-export job

On the other hand, Figure 4 shows the database logs for a process in which the user had to authenticate

to grant access to the files in the import service.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

14 of 60

Figure 4: Database log for an import-export job that required user authentication

2.2.1. Management of authentication tokens
As a side note with regards to the design of the import-export service, it is important to mention the

authentication flow for the import and export services. Thus, each HTTP REST request to the Import

Export service may require an import_token as well as an export_token fields. Those fields will be used

to grant access for the import-export service to either download files from or to upload to a certain

service. In some cases, this field is not required and then it can be left empty such as in the case of

importing a GitHub public repository which needs no authentication.

On the other hand, some platforms such as Google Drive or Dropbox requires the user to grant access

to the Import Export service for downloading or uploading the files. Both services use the OAuth 2.0

authentication protocol. Thus, once the user has authenticated, each request to those services will be

authorized. We now present the common steps for the OAuth 2.0 process to be considered for the

Import Export tool.

1. The first step consists of creating an application in the developer area of the desired service.

Depending on the service, this process can be done either from the Google API Console1 or the

Dropbox Developer page2. In the first case, once created a new project from the Google API

console, it is mandatory to first enable the Google Drive API.

2. Create an Oauth key with the necessary permissions. In this case, the Import Export tool will

need access for either downloading or uploading files, depending on the case.

3. When authentication and authorization is required, the user will see a consent screen, which

will ask her to enter an account and confirm that she allows the Import Export service to act

on her behalf.

4. Once the user has given the consent, she is redirected to the initial point and the OAuth token

has been generated and can be integrated in the REST request.

1 https://console.cloud.google.com/apis/dashboard?pli=1
2 https://www.dropbox.com/developers/apps

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

15 of 60

3. Skill ontology demonstrator

3.1. Development method
The main user stories for the focus of the demonstrator development are to find and attract right

contributors, motivating them to contribute and to create a collaborative development environment.

In order to be able to rely on proven and well accepted techniques for this purpose, it was analysed

how contributors interact with projects in OSS development, since virtual development methods,

documentation and communication are used to a large extent in OSH, too. Here, tagging has become

established in the course of the last few years. To help contributors in different ways in OSS, software

and social tagging became a popular mechanism to enrich descriptions with additional annotations,

describe tasks or add any other information to an artefact (Treude and Storey 2009) (Wang et al. 2014)

(Ding et al. 2009). This was used as inspiration to assign skills to the tasks and match them skill tags in

individual profiles. For the sake of straightforwardness, simplicity and recognition for contributors and

project teams, the approach based on tagging was chosen for the further development. The next step

was to identify user flows (user interactions) for various situations are on platforms such as

Wikifactory.

3.1.1. User flows
The user flows of the skill matching application case are based on the selected user stories described
in the previous section. In this endeavor, an analysis using the user journey3 on the WIF platform was
carried out, to identify possible implementation ideas and needs. Those were documented and the
main commonalities identified, which revealed that in each case, skills must first be assigned to user
profiles and the corresponding counterpart (e. g. issue or project). Based on this, the ideas and needs
identified were transcribed into an evaluation template (Figure 5), where users, tasks and projects are
connected and the possible implementations were stated from the different points of views:

1. a user, that provides and looks for enhancing their skills
2. a project in need of competences and searching for skilled contributors
3. tasks, that have to be enriched with information increasing expressiveness for people to

choose or assign.
This template was presented to the OPEN_NEXT project partners in a general assembly workshop to
evaluate, weight and comment on the issues that can be implemented.

3 https://depositonce.tu-berlin.de/bitstream/11303/10962/6/User_journey_Wikifactory.pdf

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

16 of 60

Figure 5: Workshop with OPEN_NEXT project members to find and prioritize user flows

Workshop participants deemed this to be a useful solution and its focus on user friendliness was well
accepted. It was also pointed out that it is helpful to be able to assess the capabilities of the users more
easily and link them to projects and issues. This provides a good first approach to evaluating their
skills.
Besides general approval, they raised concerns about the automation of a skill matching service and
how this approach could be promoted to users to realize the benefits and use the feature, since of
course at some point in the information flow a user has to manually assign some skills and interests to
the user profile. This point was well received and is considered as question for the validation rounds
with real user interaction.
From the user perspective two topics were raised to be considered during the further development.
The first is to consider the incentives and motivation of the users during a matching process, e. g. to
state what skills a user would offer in exchange for what services (meaning doing something for fun,
for reputation, in exchange for money or help on another subject, etc.). The second, to consider the
difficulty to virtually track skills and task fulfilment of physical tasks, e. g. building a prototype.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

17 of 60

3.1.2. Semantic network
Based on the user flows a semantic network was developed. The net structure of the main classes of
the semantic network for the application case are shown in Figure 6. For this purpose, the details of
the semantic network are described and the classes specific to the user stories are dealt with in more
detail. The ontology language used is OWL, which is one of the most used for semantic modelling
language. OWL is an RDF based langugage and extends the RDF specification with additional
predefined expressive relations (Pan et al. 2017).

Figure 6: Ontology classes for the user story application

1. OSH project ontology

The OSH Project ontology is inspired by the collaborative process map (CPM) (Mies 2021) developed
in OPEN!4 (Figure 7). The CPM depicts the work flow in a co-development environment of open
communities. In particular, it is oriented towards the working methods of collaborative innovators.
This group was selected for the creation of such a generic process based on a typology. The typology
was done by classifying and comparing the criteria "Decentralization of contributions" and "Pursued
level of collaborative development" of different project groups, whereby the collaborative innovators
group was assigned high rankings in both (Figure 8). This shows not only the intention for decentralized
collaboration, but also the actual implementation of this. The working method on the one hand and
the most likely open documentation on the other were assessed as suitable for identifying procedural
structures. Likewise, this way of working corresponds to a new terrain in development that contrasts

4 www.qw.tu-berlin.de/menue/forschung/projekte/abgeschlossene_projekte/open/

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

18 of 60

with established processes in industrial design and therefore is worth exploring. The CPM artefacts
used and created are oriented towards the development platform GitHub, which was selected as
representative collaboration platform for OSH development. Relevant terms of the CPM and the
relations between these have been analyzed and given appropriate attention in the OSH Project
ontology, e. g. by converting them into ontology classes and properties. Explicit data properties in the
ontology also resulted from the application data of the WIF platform GraphQL API.

Figure 7: Collaborative process map (Mies 2021)

Figure 8: Typological project types (Mies 2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

19 of 60

2. Skill ontology

The skill ontology is based on terms from the European Skills/Competences, qualifications and
Occupations (ESCO) hierarchy5. This hierarchy was analyzed and the skills were reduced for the project
relevant topics of electronics, mechanics, ICT, furniture and cars/mobility. From the hierarchy of the
remaining skills, a structure should emerge that is more general and suitable for the free and
independent work in OSH. (The tagging of skills would need to be done by a user at some point; too
many and specialized skills would cause confusion and be a barrier to use.) The main nouns and verbs
of the skills were used to identify corresponding skill terminologies which occur in the OSH world. For
this, a sample of project, user and issue data from the WIF platform was used, resulting in the
identification of skill entities and skill actions. Figure 6 displays how they are connected to the user,
task and project classes of the OSH Project ontology. Skill entities serve as classes into which instances
can be classified, e. g. an instance 3dprinter of the Skill Entity subclass Machine. Skill actions are
implemented as object property (relation) in the ontology. In Table 3 the relations of skill entities and
skill actions are further sectioned.

Table 3: possible skill_actions relating a user to a Skill_Entity

Possible skill_action Skill_Entity

operating, installing, maintaining, teaching, cost_estimating, designing Machine

operating, installing, maintaining, teaching, designing Tool

teaching, legal_information Topic

technical_writing, cost_estimating Material

teaching, cost_estimating, technical_writing, product_pricing Process

teaching, cost_estimating, legal_information Event

This structural division into skill action and entity differs from the ESCO hierarchy, in which these are
usually combined (e.g. maintainingMachine, operatingMachine, ...). Such a division is on factual level
more precise, since a skill usually involves an artefact and also an activity or action performed on/with
it, like “teaching a topic”. On semantical level this division results in a stronger expressivity since now
divided, both concepts (the skill_action and the Skill_Entity) can be semantically further described,
enriched and also embedded into the semantic network with additional relations. In addition to such
a division there are further advantages. On the one hand, there is no duplication of instances. As soon
as a skill action changes on a skill entity, no new instance has to be created, but only a relation to the
instance has to be changed. This means that only one semantically strongly enriched instance
described by many relations is created instead of many semantically weakly enriched instances. On
the other hand, skill entities can also be enriched with skill-independent attributes and relations, as is
done in the case of project and issue tagging. If, for example, machines or tools are to be further
specified, these do not have to be additionally created as concepts in the ontology.

Furthermore, there is the additional advantage that skill entities can be assigned to users even without
a concrete skill action, such as operating or maintaining. On the one hand, this is an advantage, as
information is often only available in fragments, so that an assignment is still possible; the generic
parent-relation skill_action is simply used. On the other hand, this also means that as soon as no results
can be found for a query of a certain skill_action - Skill_Entity combination, it can simply be extended
to the focus on the Skill_Entity. For instance, someone is needed who understands the function of a

5 https://ec.europa.eu/esco/portal/home

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

20 of 60

3D printer in order to build it (building 3dprinter). If no one can be found for this, it is possible to extend
the query to someone who has, for example, already repaired or maintained a 3D printer (repairing
3dprinter or maintaining 3dprinter or even skill_action 3dprinter). The knowledge of certain individual
parts could also be helpful in building the printer.

3.2. Design notes
This section provides a deeper insight into the constitution of the code and how the methods are

handled to instantiate and query the ontology.

3.2.1. Class diagram

Figure 9: Demonstrator class structure

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

21 of 60

OntoModeler.java

The OntoModeler.java class is used to create, load and save, handle and serialize OWL ontologies and

ontology files. The main functionality in the demonstrator is, besides loading and saving the ontologies,

to read out the mappings of the OSH project ontology, get information about the relating concepts (e.

g. get the domain class of an object property) and to instantiate information from the JSON input files

(this happens mainly in case of skill data instantiation). In addition, it is used for reasoning during the

instantiation of the project data and saving the instances ontology.

SkillReader.java

This class provides functionality to read skill information from the provided JSON input file

(skills_schema.json). It uses a JSON-pointer to specify the location of desired data in the JSON file and

creates a JSON array. Defined key attributes are used to read out values from this array. Afterwards,

the predefined skill schema (on_skills_void.owl) is loaded with the help of the OntoModeler.java class

and the resulting values are instantiated as OWL ontology (on_skills.owl) and saved.

CreateSkill.java

This class holds the main() method for the skill instantiation process and coordinates it by passing

parameters and calling functions of the SkillReader.java and OntoModeler.java classes. The

parameters required for skill instantiation are initiated here in the beginning.

JSONReader.java

The JSONReader.java class holds functionality to extract data from the JSON formatted inputs over

JSON pointers. If pointers contain array (indicated by a “~” symbol as shown in section 3.3 Custom

instantiation of the main report), there is functionality to parse those arrays into its entries. In addition,

it also coordinates the connection of value information to its respective entry in the array. This ensures

that an user instance created from the first (second, …, n-th) entry is assigned to the user information

found in the first (second, …, n-th) entry of the array.

JSON2NTmapper.java

This class uses the results of JSON data extraction from the combination of JSONReader.java and

OntoModeler.java methods and converts them into a NT-file. N-Triples6 (NT) is a plain text format for

RDF graphs and serves for the instantiation as intermediate format from JSON to OWL translation.

NTParser.java

This class loads an NT-file (in the instantiation case provided by methods from JSON2NTmapper.java

class) and provides a method to enrich the file, e.g. with a statement to import the vocabulary of

another ontology or setting different prefixes to the ontology. In addition, there are functions to

convert the NT-file to another RDF based format.

CreateInstances.java

This class holds the main() method for the project data instantiation. It provides all input files and

locations. Connecting the OntoModeler.java, JSONReader.java, JSON2NTmapper.java and

6 https://www.w3.org/TR/n-triples/

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.w3.org/TR/n-triples/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

22 of 60

NTParser.java classes, it coordinates the calling of methods and handover of parameters and results

of methods.

Queries.java

This class provides methods to return SPARQL query strings based on the described user flows. Some

SPARQL query examples are given in Table 2 of the main document in section 3.2

QueryExec.java

The QueryExec.java class connects to an ontology and executes queries on it. In case of the

demonstrators, the instantiated project data (on_Instances.owl) is queried with the query strings

provided by the Queries.java class.

RunQuery.java

This class holds the main() method for the querying process and uses SPARQL queries from the

Queries.java class passing it to the QueryExec.java class.

3.2.2. Flow instantiation
The following diagrams visually facilitate the function of the main processes instantiation and querying.
The instantiation process works differently for the skill instantiation and the project data instantiation.
Both are shown below, for skill instantiation in Figure 10 and for the instantiation of the project data in
Figure 11 and Figure 12. The flow charts are provided in a sequential structure, indicated by the process
arrows. At the same time the different classes used are displayed in a swim lane fashion, indicated by
lines without arrows. Before starting the instantiation process, it is possible to change needed
variables, shown in the manual input section of the flow charts. For the user flows of the project, all
variables are set and the instantiation methods were executed resulting in a fully instantiated
ontology, which is ready to be queried.
The sequence for the instantiation process of the ontology in Figure 11 and Figure 12 is shortened to
a level of general understanding. To get a more elaborate insight of the explicit code function, the
project repository holds a complete flow of all functions used, necessary to understand it. However, a
detailed presentation of self-explanatory methods has been omitted (e.g. setter
methods). Additionally, the methods are mostly described in the commented code as well.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

23 of 60

Figure 10: Skill instantiation flow

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

24 of 60

The skill instantiation is additionally presented shortly in writing. The CreateSkill.java class holds the
main method and is responsible for the process flow.
At the beginning an instance of the SkillReader.java class is created and the location for the JSON input
file is given. This input file is read by a reader that now holds all information needed. Now the different
pointers are set:

• The pointer variable indicates which section of the input file is necessary for the instantiation
• The skill target variable indicates which values are instantiated as individuals (that counts e. g.
for 3d-printing)
• The skill entity type variable shows how to classify a relating skill target variable (e. g. 3d-
printing is an individual of the skill entity type class Process)

After setting all variables, the instantiation process begins (instantiateTargets()):
1) A pointer is created from the pointer string variable
• If the pointer exists, the void skill ontology is loaded to be instantiated.
• The data array from the pointer variable is read
• For each entry in the array a skill target and skill entity type are read and instantiated. A skill
target variable is instantiated as individual of the class indicated by the relating skill entity type.
• After instantiation of all skill targets, the instantiated ontology is saved.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

25 of 60

Figure 11: Flowchart Instantiation (1/2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

26 of 60

Figure 12: Flowchart Instantiation (2/2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

27 of 60

The instantiation process is briefly described in four main parts. The repository contains a much more

detailed representation of some functions in the flow7, which is not beneficial for the understanding

here and would exceed the scope of the explanations of this work.

1) Getting the mapping annotation properties from the OSH project ontology

This part relates in the flow chart to the section between the steps “Start CreateInstance.java” and

“END OntoModeler.java”. After setting the manual inputs, the instantiation process starts with the

initialization of an OntoModeler.java object in the CreateInstances.java class. After that the following

short steps take place:

• The IRI of the mapping ontology is set and the ontology file is loaded

• The mapping ontology is merged with the ontology find behind the skill ontology IRI (here the

skill ontology)

• The mapping annotations are set, which should be searched in the following process. (setClass-

mapping(), setOPmapping() and setDPmapping())

After setting what mapping annotations should be searched, the mapping annotations of every class,

object property and data property are read out of the ontology and the results are saved into lists.

Each list contains of three arrays and is arranged as follows for each of the subsequent cases:

• Class mapping annotations: The first array contains all mapping annotation pointers for the

individuals to be instantiated. The second array simply contains an “rdf:type” statement and

the third array holds the respective class IRI of the instances class.

• Object property annotations: The first array contains the pointers of the domain class from the

respective object properties, which´s IRIs are stored in the second array. The third array stores

the object property annotation pointers of the range classes from the respective object prop-

erties.

• Data property annotations: The first array contains the pointers for the individuals to be in-

stantiated. The second array contains the data property IRIs and the third array contains the

respective data property annotation pointers.

2) Creating an NT file from the mapping annotation pointers

The explanations in this part refer to the steps from “Start JSONReader.java” to “END

JSON2NTMapper.java”. After the initialization of a JSONReader.java object, the file location of the

JSON inputs is set and the file is opened. A JSON2NTmapper.java object is created and the mapping

ontology IRI, to load the existing OSH project ontology, and the instance IRI, in which the new instances

are to be stored, are set. With the JSONReader.java object annotation pointers from the lists of class-

7https://github.com/OPEN-
NEXT/WP3_Skillmatching/raw/main/files/Flowchart_create_instances_complete.png

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OPEN-NEXT/WP3_Skillmatching/raw/main/files/Flowchart_create_instances_complete.png
https://github.com/OPEN-NEXT/WP3_Skillmatching/raw/main/files/Flowchart_create_instances_complete.png

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

28 of 60

, object property- and data property annotations created in the first step are replaced with their

corresponding values. With the values and the IRIs from the ontologies, NT statements are created

and saved as NT file.

3) Converting the NT file into an RDF format

This section concentrates on steps between “Start NTParser.java” and “END NTParser.java”. When

created, the NTParser.java creates an ontology model, which will be enhanced with the further

described information. Necessary prefixes are added to the ontology model with the setPrefix()

method. The readNTModel() method reads the NT file with instances information from its location that

was handed over to the constructor at creation. After setting the ontology IRI, adding necessary

statements to import concepts and vocabulary from other ontologies and setting the output file

location, the ontology model is saved in OWL format.

4) Reasoning over the ontology and assert inferences

The last section focuses on the steps from “Start OntoModeler.java” to “END OntoModeler.java”. After

initializing an OntoModeler.java object, the instance ontology is loaded from its IRI. The

assertInferences() method creates a reasoner, that precomputes inferences, creating new axioms for

the ontology. A loop runs through the set of new axiom, adds it to the ontology and saves it.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

29 of 60

Figure 13: Query execution flow

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

30 of 60

The query execution flow is shown in Figure 13 and starts with the RunQueries.java. In this class, the

ontology IRI to be loaded and queried is provided as string variable. After initiation of a Queries.java

and a QueryExec.java object, the ontology IRI is set for the query execution and the ontology model is

loaded. The Queries.java class provides methods to return query strings for the execution on the

ontology. In Figure 13 the example of the UserSkillInterest() query generation method is shown in the

process. This can be replaced with other query generation methods from the Queries.java class. The

generated query string is handed over to the query execution method of the QueryExec.java class. To

execute the query a Query and a QueryExecution type variable are created and the result set from the

query is generated. The result set is run through and the results for every variable is saved into a result

list. The number of variables depends on the number of variables in the SELECT clause of the query. At

the end the result list is post-processed to match a table like layout.

3.3. Installation

There is no specific installation needed. Depending on the use, the repository may have to be cloned.
That is the case, when the mapping annotation properties in the ontology needs to be changed or if
the query functionality provided in the demonstrator is used. For this general knowledge about Git is
required. Furthermore, the structure of RDF and SPARQL should be known for the query use of the
ontology. Interested developers, that need to change, adapt or improve the ontology, should be
familiar with OWL and its extensions in contrast to RDF if aspiring reasoning or axiomizing. Table
4 and

Table 5 document the used software stack and the dependencies in software code.

Table 4: Used software stack

Software or Tool Purpose

GitHub Ontology hosting and demonstrator documentation

Protégé Editor8 v5.5.0 Ontology modelling

GraphQL API WIF data extraction

Eclipse IDE (v 2020-03 R.0)
with JRE1.8

Coding and development of the demonstrator, including ontology
files, JSON inputs and connection to GitHub repository

Table 5: Software code dependencies

Dependency package Purpose

ONTAPI9 v2.1.0 JAVA package for ontology handling. It combines the JAVA ontology
APIs OWL API and JENA API10. This was used for parsing and
serializing NT data during the instantiation process and for the
SPARQL query.

OWL API11 v5.1.14 Java package for handling OWL ontologies. This was used to extract
the mapping annotation properties and to create the skill instances
in the on_skills.owl

8 https://protege.stanford.edu/
9 https://github.com/owlcs/ont-api
10 https://jena.apache.org/
11 https://github.com/owlcs/owlapi

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://protege.stanford.edu/
https://github.com/owlcs/ont-api
https://jena.apache.org/
https://github.com/owlcs/owlapi

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

31 of 60

Hermit v1.3.8.510 JAVA OWL Reasoner to assert inferences

javax.json v1.1.2 JAVA package for JSON processing, especially providing the use of
JSON pointers.

For changes in the mapping process, handling of the JAVA ontology APIs, OWL API and JENA API are
used. They are JAVA implementations to build and handle semantic applications and provide functions
to create, manipulate and serialize ontologies. To understand the functioning of the demonstrator, a
short example is detailed below. It is oriented on the software stack shown in Table 4. Changing and
further handling of the demonstrator is explained in the step-by-step examples section of the main
document. For further developmental changes, refer to the flowcharts in the previous design notes
section for an in-depth understanding.

The following steps can be followed to run the demonstrator:

1) Visit the GitHub repository: https://github.com/OPEN-NEXT/WP3_Skillmatching
2) Copy the repository link

Figure 14: Coping the link of the GitHub repository page

3) If not already done, an SSH key should be created to connect to the repository. Please refer to
the Connecting to GitHub with SSH12 guide

4) Open the Eclipse IDE and choose a workspace

12 https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OPEN-NEXT/WP3_Skillmatching
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

32 of 60

Figure 15: Starting Eclipse and choosing a workspace

5) Check if Eclipse uses the SSH key from GitHub

Figure 16: Setting the SSH2 key in the preferences

The SSH keys used in Eclipse can be found under Window>Preferences>General>Network

Connection>SSH2.

If the key is not found there, it has to be added from the location it was saved during step 5) of this

section.

6) Open the git perspective

Following Windows>Perspective>Open Perspective>Other…

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

33 of 60

Figure 17: Open Git perspective in Eclipse (1/2)

Select Git.

Figure 18: Open Git perspective in Eclipse (2/2)

7) Click on Clone a git repository in the Git Repositories tab.

Figure 19: Clone a Git repository from the Git repositories tab

Afterwards the dialogue box for cloning a repository then opens.

8) Specify the repository to clone

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

34 of 60

After inserting the repository link into the URI field, the other fields should be filled automatically. If

this does not happen, the fields have to be filled according to Figure 20.

Figure 20: Inserting the repository URI to clone

Click Next.

9) Select the branch. The usual case is to clone the main branch.

Figure 21: Selection the branch to clone

Click on Next.

10) Choose the local destination of the Git repository by filling the Directory field.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

35 of 60

Figure 22: Choosing a local directory for the git repository

Click on Finish. The repository WP3_Skillmatching should now be displayed in the Git Repositories tab

(cf. Figure 19).

Now a Maven project needs to be imported that integrates the Git.

11) Import a Maven project

Following File>Import>Existing Maven Projects

Figure 23: Importing existing Maven project

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

36 of 60

Choose the root directory with WP3_Skillmatching. For this manual another project

WP3_Skillmatching_manual was created to be imported which is why it is displayed in the figures. For

the use of the skill matching demonstrator the WP3_Skillmatching but has to be used.

Figure 24: Choosing root directory

Click on Finish.

The Maven project will appear in the Project Explorer tab.

Figure 25: Imported project in the project explorer tab

If there are some errors right away, most likely the JAVA compiler version has to be set to 1.8.

12) Set JAVA Compiler Version

This can be done in the properties of the project. (Right click on the project)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

37 of 60

Figure 26: Setting JAVA Compiler level

In the Java Compiler tab the Use compliance from execution environment ‘J2SE-X.X’ on the Java Build

Path needs to be unchecked and the Compiler compliance level has to be set to 1.8.

Click Apply and Close.

Figure 27: Agreeing to the project build

The rebuild of the project has to be accepted by clicking on Yes.

If an error on the JUnit import statement occurs in the OntoModeler.java class, the library has to be

added to the project.

Figure 28: JUnit import error

The library can be added in the Java Build Path by right clicking the project and following

Properties>Java Build Path>Libraries>Add Library >Junit >Junit5.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

38 of 60

Figure 29: Adding JUnit library

Click Next. Choose Junit5. Click Apply and Close.
Now the demonstrator is ready to use.

3.4. Ontologies
In this section, basics of ontology modelling with respect to frameworks, languages and documents

used are detailed.

3.4.1. Resource Description Framework and Web Ontology Language

The Resource Description Framework (RDF) is used to model knowledge on the web. It uses triple
patterns in “subject-predicate-object” style to connect subject and object resources (uniquely linked
via uniformed resource identifier (URI) via relations, so called properties. The RDF schema (RDFS)
builds upon RDF and provides schematic definitions about predefinitions. Those are e.g. the definition
of constants like class, properties, range (called the object resource of a property) or domain (called
the subject resource of a property). Those triple patterns create a net of knots and relations in a
manner of graph theory. The web ontology language (OWL), the most used language to model
semantics, builds upon RDF and extends it with more expressions making it semantically richer and
allows reasoning capabilities (Pan et al. 2017).

(Antoniou and van Harmelen 2009) provides a comprehensive overview about differences between
RDF and OWL. Knowledge that is necessary for a basic understanding is the structure in OWL ontology,
which is explained and illustrated below:

Classes are arranged in a hierarchy and connected to each other via object properties. These can also
be arranged in a hierarchy. For each property, the domain class (the subject of the relation) and the
range class (the object of the relation) are defined. Instances are realizations of resources/individuals
within an ontology and are classified. They can be connected to other instances by using object
properties. Another type of property, a Data property links an instance of a class to a value of a
primitive data type. Data properties are used to describe instances more precisely. The domain of a
data property is the class to which the instance belongs to. The range, as described, is a primitive data
type. These relationships are shown in Figure 30: The instances “User1” of class User and “ProjectX”
of class Project are connected to each other via “member_of” and “has_member” object properties.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

39 of 60

Both instances are further described with the data properties “Name” and “ID”. The dotted lines in
Figure 30 show the relation between instantiated concepts and the class, and property structure of
the ontology.

Figure 30: Instantiation example

3.4.2. OWL documents
The constitution of an OWL file is simple. Every OWL file begins with a header that specifies the

ontologies terms, with the following components:

- The ontology namespace and version is defined. The namespace of an ontology is used to

uniquely identify it. This is advantageous because of disambiguation when using several

vocabularies in one ontology. Since OWL is based on RDF, there are some RDF/S namespaces

defined in the ontology header right away, so standard RDF vocabulary can be used without

import (more about the import will follow in the next points).

- Prefixes used in the Ontology are displayed. Generally, a prefix refers to an ontology

namespace. Used in the ontology, the prefix is exchanged and so refers to the location of the

used resource. An example is given for the rdfs:type property. The prefix “rdfs” refers to its

namespace and the location “http://www.w3.org/2000/01/rdf-schema#”. Using the rdfs:type

property in the ontology, the prefix is resolved and the property

http://www.w3.org/2000/01/rdf-schema#type is used in the statement.

- An (optional) import statement is added. The import statement refers to another ontology

namespace and causes the usability of the vocabulary from the imported ontology. All

ontology vocabularies used, need to be imported at first. (Exceptions are the standardized RDF

vocabularies mentioned above.)

The header of the developed ontology is shown in Figure 31.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#type

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

40 of 60

Figure 31: Ontology header

After the header, possible annotations on the ontology follow, such as creator. However, these do not

contribute to the function, so they are only briefly mentioned here for completeness.

Now following are the declaration statements for the classes, properties and individuals, that occur in

the ontology, shown in Figure 32 and Figure 33 :

Figure 32: Declaration axioms for (a) Class Project (b) object property has_member (c) data proerty Project_title

Figure 33: Declaration axiom for (a) individual CAD_file (b) annotation property wif_issue_1_cmap

After that, the declared concepts are put into relation and further defined with additional axioms. That

are e.g. setting the domain and range of properties, adding subclass/subproperty axioms or cardinality

constraints for properties. Some of them used in the ontology, that are necessary to understand the

main report, are displayed in the following figures and shortly explained.

Figure 34: Axioms to set (a) subclass relation and (b) disjointness of classes

Figure 34 (a) hierachizes the Author class as sublcass of User. Figure 34 (b) sets the classes Project and

User as disjoint, i.e. those classes do not share any individuals. (In other words, an instance User cannot

be a Project at the same time)

Figure 35: Classifying an individual

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

41 of 60

Figure 35 classifies the individual “C” as instance of the lass “programming_lanugages”.

Figure 36: Defining inverse properties

Figure 36 defines the object property “member_of_project” as inverse of the “has_member” property.

Since object properties are defined as unidirectional, an inverse property needs to be defined. The

domain of a property therefore is the range of the inverse property and vice versa.

Figure 37: Axioms defining the (a) domain and (b) range of a property

Figure 37 shows axioms setting (a) the Project class as domain of the object property “has_member”

and (b) the “Member” class as range. The domain and range definition for a data property works similar

but the range refers to a value. (The “<Class IRI=../>” statement therefore would be changed to refer

to a datatype <Datatype abbreviatedIRI="xsd:string"/>).

Figure 38: Defining the annotation property wif_issue_1_cmap

Figure 38 shows how the annotation property “wif_issue_1_cmap” is further defined. The property is

related to the “Project” class and contains a literal value for the JSON pointer.

Figure 39: Property restriction on class Creator

Figure 39 gives an example on a more complex axiom referring the class “Creator”. The class is

restricted with boolean combination “union” of two cardinality constraints, meaning one of them

needs to be true. The cardinality constraints each state that an instance of “Creator” has to be at least

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

42 of 60

one property referring to an instance of “Project” (property “creator_of_project”) or “Task” (property

“creator_of_task”). The whole property restriction states that to be a creator, one has to be the creator

of at least one project or one task.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

43 of 60

4. Collaborative Production – Identifying production metadata

4.1. Development method

To identify metadata relevant for the replication of OSH products, one-on-one feedback sessions were
carried out with makers from the OPEN_NEXT consortium and the OSH community. They were invited
by open calls. Volunteers have been asked for a self-assessment of their level of expertise in
manufacturing hardware; each voluntary gave a number with 1 being the lowest (beginner level) and
5 being the highest (expert).

For the input section, makers received a short introduction into the concept of the Wikibase instance
and were confronted with two questions:

1. What the production categories of interest (e.g. 3D-printed) when dealing with OSH are?

2. What are the corresponding data fields (e.g. material, size) in those categories that you would
need to assess whether or not it makes sense for you to produce the corresponding part/module
yourself or e.g. order it somewhere else?

Every maker was granted editing rights (“developer access”) to a Markdown document on GitHub.
They were asked to write their input directly in that document by following the prepared structure. To
ensure that:

• possible misunderstandings between interviewer and interviewee have been avoided;

• the full change history of the document is publicly available (hence changes can be viewed by
anyone in the document, also information about when and by whom);

• no transcription of interviews was needed.

All input sessions were conducted on the same document, hence starting the first session with an
empty template and finalizing the last with a relatively mature state. Sessions were organized in the
order of self-assessed expertise level given by the makers, starting with the lowest one. It is visible in
the history of the document that the last sessions only led to the change of details (specifically only in
the section for PCBs then). In total, 6 sessions have been conducted, 3 with makers from the
OPEN_NEXT consortium, 3 with makers from the OSH community (specifically the Open Source Ecology
Germany community).

The resulting document was commented by the team and embedded into the metadata specification
(Task 3.3 of OPEN_NEXT project). Both the resulting metadata specification and the annotated input
document, were sent in their final state to all makers that took part in input sessions, requesting their
feedback whether the resulting specification for production metadata meets their expectations.
Feedback was collected by E-mail and processed accordingly.

4.2. Design notes

The specification was published under a free/open license on GitHub, both in human-readable form
(in Markdown13 and machine-readable form (in Turtle/RDF, as part of the ontology of T3.314)).

13 https://github.com/OPEN-NEXT/OKH-LOSH/blob/master/OKH-LOSH.md#production-metadata
14 https://github.com/OPEN-NEXT/OKH-LOSH/blob/master/OKH-LOSH.ttl

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

44 of 60

Figure 40: Provision of production metadata by publishing a plain text file („manifest file “) in a git repository

As shown in Figure 40 project team members can access the specification online, use the metadata
blocks of interest and input metadata in the corresponding format into a plain text file (“manifest file”)
in their GitHub repository. By that, the metadata is already publicly available. The crawler (T3.4)
automatically finds and converts this data into RDF to make it available as Linked Open Data for any
platform and uploads it the Wikibase instance (T3.3).

All documents were designed in a manner that makes them as freely exploitable as possible for others.
Using the Markdown format for the human-readable version of the specification allows for
(automated) exports in a large variety of formats (e.g. PDF, ODT, DOCX, EPUB) while being easily
editable and git-compatible (since it’s a plain text format). TTL/RDF allows for referencing and
integration in any context of Linked Open Data, e.g. by platform owners.

The repository can be downloaded on GitHub as a ZIP file or via the git command line tool using SSH.

However, to read or implement the specification, no installation or download is required. Data fields,
properties, definitions etc. can be referenced directly from the TTL file (e.g. with the base URL
https://github.com/OPEN-NEXT/OKH-LOSH/raw/master/OKH-LOSH.ttl# to reference the outer-
dimensions property in the dimension of millimeters).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OPEN-NEXT/OKH-LOSH/raw/master/OKH-LOSH.ttl

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

45 of 60

5. Collaborative Production – Identifying production metadata in

documentation through machine learning

5.1. Development Method
There are various OSH platforms with different styles, information and structure, and they are all
documented in a different way. As a community member searches for a specific production metadata,
it can be challenging to find the right project through first glance.
In order to make this process easier and to identify some of the production metadata in
documentation, it was necessary to go through all documentation and spot the specific entities. In
order to identify these entities, different kind of machine learning algorithms are searched. Named
Entity Recognition (NER) is used in Natural Language Processing (NLP) to extract information into pre-
defined characteristics.

The algorithm uses NER of SpaCy to train the model with Deep Learning (NN) for the production
metadata characteristics like manufacturing process, materials, machine type and dimensions. With a
web application, any kind of text can be given as input, and the output will be provided with the
classified entities. The application can be used for any plain text input or Mediawiki-based websites
(such as Appropedia projects15). The recommended pre-requisites for the following sections for this
solution are defined as follows and these are also present in the GitHub repository16 under
requirements.txt.

Required software:

• Python intepreter (version 3.7 or later)

• Doccano (1.3.0)

Required libraries:

• SpaCy >= 3.0.5

• json >= 2.0.9

• Tkinter >= 8.6

• requets >= 2.24.0

• bs4 as Beautiful Soup >= 4.9.3

• Pandas >= 1.1.3

• Pickle >= 4.0

Need to download an IDE environment on your computer, clone the repository on you IDE, then to run
the application, run either runModel_support file

This guide assumes working knowledge of Git and running Python scripts.

15 https://www.appropedia.org/Welcome_to_Appropedia
16 https://github.com/OPEN-NEXT/Named-Entity-Recognition-for-extracting-Open-Source-Hardware-project-
metadata/blob/main/requirements.txt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

46 of 60

For recreating the algorithm with a different dataset and entities, the next steps should be

implemented.

1. Creating a dataset

• To create a dataset, the basic definitions and some open source hardware platform projects

can be used. The train datasets can also be found in specific dataset platforms. If the dataset

is already labelled, it can directly be implemented in step 3.

• The training dataset should be saved as txt to import in labelling tool doccano later on.

For this solution, the selected characteristics or entities are manufacturing process, materials, machine

types and dimensions. Some examples from the training dataset are shown in Figure 41.

• The complete trained dataset can be found in the GitHub repository17.

2. Labelling the data

This step is for labelling the entities using doccano, but if you already have labelled data, you can skip

this step and directly go to training the model. Doccano18 is an open source annotation tool to create

17 https://github.com/OPEN-NEXT/Named-Entity-Recognition-for-extracting-Open-Source-Hardware-project-
metadata/tree/main/Raw%20Data
18 https://github.com/doccano/doccano

Manufacturing process:
- CNC machining: 3-axis CNC milling, CNC routing, CNC
lathing

- Laser cutting: Laser engraving, laser welding, bending

- 3D printing: FDM, SLA, SLS etc.

Materials:

- Metals: Steel, carbon steel, stainless steel, aluminium,

- Polymers: ABS, nylon, PLA, PVC etc

- Ceramics: concrete, stoneware, glass

Machine types:

- 3D printer

- CNC router

- Laser cutter

Figure 41: Example of the training data

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

47 of 60

labeled data. There are different tools to label a dataset, in this solution the tool doccano is used and

will be explained further.

• First step is to install doccano, please follow the doccano19 instructions and open the program.

• For Windows installation,

o pip install doccano

o doccano

• Go to http://127.0.0.1:8000/

• Login with username: admin and password:password.

• Click create, type in your project name, description and select the sequence labelling project

type.

19 https://doccano.github.io/doccano/getting-started/

Figure 42: Login for doccano

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://127.0.0.1:8000/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

48 of 60

Figure 43: Creating a project in doccano

• After creating project, click on dataset and import your dataset.

Figure 44: Importing a dataset for doccano

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

49 of 60

• Select the file format you have for your data. Make sure you have either plain text, JSONL

(JavaScript Object Notation Lines) or CoNLL (Conference on Natural Language Learning) format

for your unlabelled data.

• Go to Labels and create your labels.

Figure 45: Creating labels in doccano

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

50 of 60

• While creating a label, make sure you enter a suitable name, a shortcut on keyword is also

optional and the color.

• Go back to your imported dataset and click annotate, now you can start annotating, the

dataset should look like in Figure 46.

• The first entity will open, you can select the word/s you want to label and continue until all

your dataset is labelled accordingly

• After finishing the labelling process, click "Export Dataset" as JSONL file format under Actions

and save the file.

3. Training the model

• First step is to install spacy

• Firstly, we read the JSONL file we exported after labelling with doccano.

 import json
 labeled_data = []
 with open(r"project_1_dataset_v4.jsonl", "r", encoding='utf-8') as read_file:
 for line in read_file:
 data = json.loads(line)
 labeled_data.append(data)
 print(labeled_data)

Figure 47: Reading labelled dataset

• After reading the data, convert the format to SpaCy format

Figure 46: Imported dataset in doccano

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

51 of 60

TRAINING_DATA = []
 for entry in labeled_data:
 entities = []
 for e in entry['labels']:
 entities.append((e[0], e[1],e[2]))
 spacy_entry = (entry['text'], {"entities": entities})
 TRAINING_DATA.append(spacy_entry)
print(TRAINING_DATA)

Figure 48: Converting the format

• Next step is to train the model- We use Deep Learning (NN) and set a dropout rate of 0.3 to

prevent overfitting.

import spacy
import random
import json
from spacy.tokens import Doc
from spacy.training import Example
nlp = spacy.blank("en")
ner = nlp.create_pipe("ner")
nlp.add_pipe('ner')
for _, annotations in TRAINING_DATA: #goes through all the
entities are get the name token.label_ one
 for ent in annotations.get("entities"):
 ner.add_label(ent[2])
Start the training
nlp.begin_training()
Loop for 40 iterations
for itn in range(40):
 # Shuffle the training data
 random.shuffle(TRAINING_DATA)
 losses = {}
Batch the examples and iterate over them
 for batch in spacy.util.minibatch(TRAINING_DATA, size=2):
 for text, annotations in batch:
 # create Example
 doc = nlp.make_doc(text)
 example = Example.from_dict(doc, annotations)
 # Update the model
 nlp.update([example], losses=losses, drop=0.3)
 example = Example.from_dict(doc, annotations)
 print(losses)

Figure 49: Training the model

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

52 of 60

• While training data, some warnings may be shown at first, then the iterations should start and

take a few minutes

• After iterations stop, we save the model

nlp.to_disk("./my.model")

Figure 51: Saving the model

• Testing the model, you can write your example text in the “example” and see the results.

from spacy import displacy
example = "an example test"
doc = nlp(example)
displacy.render(doc, style='ent')

Figure 52: Testing the model

5.2. Design notes
In conclusion, the following steps should be performed to identify metadata:

• Create a train dataset from OSH project websites.

• Label the dataset with the selected entities using doccano labelling tool manually.

• Save the labelled data as JSONL format.

• Use SpaCy Neural Network model to train a new statistical model.

• Save the model

Figure 50: Iterations through training

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

53 of 60

• Then create a Spacy NLP pipeline and use the new model to detect entities corresponding your

characteristics.

Figure 53: Flowchart of steps to recreate a NER

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

54 of 60

5.3. Installation guide
1. Copy the URL of the repository in Github20 as in Figure 54

2. Open a Python IDE (Integrated development environment) to clone the GitHub repository, in

our case we used PyCharm Community Edition 2020.3.2.

3. Create a new project and save it.

4. In the project, go to VCS and click on create git repository as seen in Figure 55. If you do not

have VCS option shown as in Figure 55, you need to install the package for your IDE.

5. After cloning the repository successfully, it will show the tab Git instead of VCS

20 https://github.com/OPEN-NEXT/Named-Entity-Recognition-for-extracting-Open-Source-Hardware-project-
metadata

Figure 54: Copying the URL of the repository

Figure 55: Create Git Repository

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

55 of 60

6. Under Git select clone and paste the URL you have copied in step 1.

7. After cloning the repository, it will open in your IDE, you need to create the python

environment if it has not happened automatically, and the python compiler for opening

application.

8. Go from directory to selected app, run the runModel_support.

Figure 56: Clone the URL

Figure 57: The cloned repository in IDE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

56 of 60

9. The application will start in a new window, you can give your input and see the results.

Figure 58: Front end of the application

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

57 of 60

6. Documentation and Guidelines – Project overview template

6.1. Development method and design notes

Requirements for the template were:

• to provide assistance for documenting and presenting an overview of the actual state of the
project.

• to provide a total picture about the numerous project details (such as licensing, maturity of
the project, motivation, next steps and many more)

• to be applicable to any platform and to be easily usable

Bases on these requirements, a commonly used template on Wikifactory21 was taken as reference and
further developed based on the interview results from the previous deliverable D3.1. New sections
and additional questions were added to enhance the completeness of the template22. Certain sections
were also deleted to avoid increasing the complexity of the project overview. Markdown was chosen
as the suitable format for the template, because of the ease of use and replicability on various
platforms and tools23.

7. Documentation and Guidelines -Technology-readiness levels for

OSH

7.1. Development method and design notes

Requirements for the model were:

• to allow for rapid and intuitive assessment of maturity of a certain technology for a certain use
case and operation environment

• to allow for easy monitoring of the progress made by the project in this regard

• to enable assessment of project for any project team member, skilled in the corresponding
field(s) of technology, without training in the use of the classification model

• to be applicable for a large variety of technologies

As a result, the TRL from EU-H2020 Annex G24 has been used. These in turn are based on NASA’s TRL25,
which "provide useful insights into two key contributors to readiness:

1. degree of functionality provided

2. fidelity of the environment (to the intended operational environment) in which this functionality
has been demonstrated"

21 https://wikifactory.com/+wikifactory/project-example-template/file/README.md
22 https://github.com/OPEN-NEXT/WP3-Documentation-Guidelines-for-OSH-
Projects/blob/main/Documentation%20%26%20Guidelines/Project%20overview%20documentation%20Templ
ate.md
23 https://jaantollander.com/post/scientific-writing-with-markdown/
24 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-
g-trl_en.pdf
25 https://apps.dtic.mil/dtic/tr/fulltext/u2/a443149.pdf

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

58 of 60

The TRL stated in EU-H2020 Annex G comes with a level of abstraction high enough to be applicable
for very diverse technologies and are suitable to monitor the progress of a project over time26.
However, the high abstraction also limits the informative value, e.g. regarding safety, usability,
efficiency or maintainability of the product (just to name a few)27.
Nevertheless, the TRL approach has been chose for its well-tested application on a wide range of
different hardware technologies. The yet relatively simple classification into 9 stages makes it suitable
for a decentralized use in the context of open source hardware. This approach aims to foster a deeper
understanding for the maturity of technological open source solutions among industrial players,
research institutes and OSH Communities; contributing to the overall comparability of OSH products.

Unlike proprietary hardware, open source hardware is meant to be used, made, modified and
distributed by anyone (ref: DIN SPEC 3105-128). This in turn is made possible by 1) the license under
which the technical documentation is published and 2) the quality of the technical documentation. As
a result, two scales are introduced:

1. Technology Readiness Levels for the context of OSH (OTRL)

2. Documentation Readiness Levels for the context of OSH (ODRL)

For OTRL the titles of the TRL in EU-H2020 Annex G have been reused and partly shortened. Following
ESA’s handbook29 and NASA’s definitions30 they have been mapped onto the context of OSD.

For the documentation quality, two end points of a scale have been defined:

1. Basic descriptions about the OSH product available, no replication possible (equals ODRL1)

2. Documentation allows for fully independent replication, operation and modification of the OSH
product, hence fully complies with the requirements stated in DIN SPEC 3105-1 (equals ODRL5).

To keep the scale easy to handle and yet representative for important stages of the documentation
quality, the scale was divided into 5 stages. In order to communicate the case of unavailable
documentation, which can also be the case for mature releases when a non-open-source license is
used, an additional stage (ODRL0) has been defined.

The current draft of the classification model is accessible under a free/open license on GitHub, both in
human-readable form (in Markdown31 and machine-readable form (in TTL/RDF, as part of the ontology
of T3.332)).

For usage or implementation, no installation or download is required. Data fields, properties,
definitions etc. can be referenced directly from the TTL file (e.g. With the base URL
https://github.com/OPEN-NEXT/OKH-LOSH/raw/master/OTRL.ttl#33 to reference OTRL5)

26 https://ec.europa.eu/isa2/sites/isa/files/technology_readiness_revisited_-_icegov2020.pdf
27 https://apps.dtic.mil/dtic/tr/fulltext/u2/a443149.pdf
28 https://www.beuth.de/en/technical-rule/din-spec-3105-1/324805763
29 https://artes.esa.int/sites/default/files/TRL_Handbook.pdf
30 https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf
31 https://github.com/OPEN-NEXT/OKH-LOSH/blob/master/OTRL.md
32 https://github.com/OPEN-NEXT/OKH-LOSH/blob/master/OTRL.ttl
33 https://github.com/OPEN-NEXT/OKH-LOSH/raw/master/OTRL.ttl

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

59 of 60

8. Documentation and Guidelines - Licensing open source hardware

guide

8.1. Development method

Since licensing of OSH is a major concern among pilots in WP4/5 and based on the interview results in
the previous Deliverable D3.1, the team reached out to the OSH community to find reliable material
and experts willing to contribute. A cooperation was started with the legal issues working group of
Open Source Ecology Germany e.V. (non-profit), which is one of the biggest community-driven
organization for open source hardware in Europe. In reconciliation with their working group, the team
created a compact, intuitive guideline about how IP law works for open source hardware and how
licensing is applied. The knowledge was primarily derived from the extensive “OSH Guideline | Legal
Issues”34 distributed by their legal issues working group. The OSH community gave feedback to shape
the form of the document so that other community members could read and understand it. The final
document aims to provide essential legal knowledge at a very low threshold within a short amount of
time.

All material for the document (including pictograms) are used under a free/open license. The
document itself has been released under a free/open license on GitHub35. Hence, the full content is
freely exploitable for anyone and any use.

34 https://gitlab.com/OSEGermany/osh-guideline-legal-issues
35 https://github.com/OPEN-NEXT/tldr-ipr

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This document is licensed under a
Creative Commons Attribution 4.0

International Licence.

OPEN_NEXT (869984) Deliverable 3.2 “Annexure: Platform demonstrator for collaborative

engineering”

60 of 60

9. References
Antoniou, Grigoris; van Harmelen, Frank (2009): Web Ontology Language: OWL. In Steffen Staab,

Rudi Studer (Eds.): Handbook on Ontologies. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 91–

110.

Ding, Ying; Jacob, Elin K.; Zhang, Zhixiong; Foo, Schubert; Yan, Erjia; George, Nicolas L.; Guo, Lijiang

(2009): Perspectives on social tagging. In J. Am. Soc. Inf. Sci. 60 (12), pp. 2388–2401. DOI:

10.1002/asi.21190.

Mies, Robert (2021): OPEN!_D2.1_Open Source Product Development Process Models. DOI:

10.5281/zenodo.5341253

Pan, Jeff Z.; Vetere, Guido; Gomez-Perez, Jose Manuel; Wu, Honghan (2017): Exploiting Linked Data

and Knowledge Graphs in Large Organisations. Cham: Springer International Publishing. DOI:

10.1007/978-3-319-45654-6

Treude, Christoph; Storey, Margaret-Anne (2009): How tagging helps bridge the gap between social

and technical aspects in software development. In : IEEE 31st International Conference on Software

Engineering, 2009. ICSE 2009 ; 16 - 24 May 2009, Vancouver, Canada ; proceedings. 2009 IEEE 31st

International Conference on Software Engineering. Vancouver, BC, Canada, 5/16/2009 - 5/24/2009.

Institute of Electrical and Electronics Engineers; Association for Computing Machinery; IEEE

International Conference on Software Engineering; ICSE. Piscataway, NJ: IEEE, pp. 12–22.

Wang, Tao; Wang, Huaimin; Yin, Gang; Ling, Charles X.; Li, Xiao; Zou, Peng (2014): Tag

recommendation for open source software. In Front. Comput. Sci. 8 (1), pp. 69–82. DOI:

10.1007/s11704-013-2394-x.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

