-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_attack.py
235 lines (201 loc) · 8 KB
/
transfer_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import torch
import torch.utils.data
import evaluation
import global_args as gargs
import models
import pruner
import training_utils
class TransferAttack(evaluation.EvaluateParsing):
def get_model_lists(self):
ks = gargs.KERNEL_SIZES
acts = gargs.ACTIVATION_FUNCTIONS
prunes = gargs.PRUNING_RATIOS
self.model_names = []
self.model_setting = {}
self.name_mapping = {}
robust = "robust" in self.setting
for idx_k, k in enumerate(ks):
for idx_a, act in enumerate(acts):
for idx_p, prune in enumerate(prunes):
model_name = training_utils.get_model_name(
2, k, act, prune, robust=robust
)
self.model_names.append(((idx_k, idx_a, idx_p), model_name))
self.model_setting[model_name] = (k, act, prune)
self.name_mapping[(idx_k, idx_a, idx_p)] = model_name
def get_victim_model(self, model_name):
k, act, prune = self.model_setting[model_name]
class Arg:
pass
args = Arg()
args.num_classes = gargs.DATASET_NUM_CLASSES[self.dataset]
args.kernel_size = k
args.act_func = act
model = models.get_model(arch, args).cuda()
return model
def load_victim_model(self, model_name):
model = self.get_victim_model(model_name)
last_epoch = 100 if self.dataset == "tinyimagenet" else 75
model_path = os.path.join(
gargs.MODEL_DIR,
self.data_arch,
f"{model_name}_omp_2",
f"checkpoint_{last_epoch}.pt",
)
print(f"Load model from {model_path}")
item = torch.load(model_path)["model"]
current_mask = pruner.extract_mask(item)
if len(current_mask) > 0:
pruner.prune_model_custom(model, current_mask)
model.load_state_dict(item, strict=False)
return model
def load_data(self, model_name):
atk_data_dir = os.path.join(
gargs.ATK_DIR, self.data_arch, self.atk_name, model_name
)
print(f"Load from {atk_data_dir}.")
datas = training_utils.load_datas(atk_data_dir, gargs.FULL_RESULT_NAMES)
split_n = int(len(datas[0]) * 0.8)
d_test = [a[split_n:] for a in datas]
x_adv, delta, adv_pred, ori_pred, target = d_test
succ = adv_pred.ne(target)
corr = ori_pred.eq(target)
idxs = succ * corr
x_adv = x_adv[idxs].contiguous()
input = delta[idxs].contiguous() if self.input_type == "delta" else x_adv
self.attr_model.eval()
pred = self.predict_attr(input.cuda()).cpu()
datas = (x_adv, target[idxs].contiguous(), pred)
return datas
def load_datas(self):
model_datas = {}
for label, name in self.model_names:
model_datas[name] = self.load_data(name)
self.model_datas = model_datas
def transfer_attack_single(self, model, model_label, data_label, data_name):
inputs, targets, preds = self.model_datas[data_name]
model.eval()
pred = model(inputs.cuda()).argmax(axis=-1).cpu()
succ = pred.ne(targets)
asr = succ.float().mean()
succ_preds = preds[succ]
pred_as_data = (succ_preds == torch.LongTensor(data_label)).all(dim=-1) # succ
pred_as_model = (succ_preds == torch.LongTensor(model_label)).all(
dim=-1
) # mis class
succ_rate = pred_as_data.float().mean()
transfer_rate = pred_as_model.float().mean()
return asr, succ_rate, transfer_rate
def transfer_attack_all(self):
n_item = len(self.model_names)
results = np.zeros([n_item, n_item, 3])
for idx_model, (model_label, model_name) in enumerate(self.model_names):
model = self.load_victim_model(model_name)
for idx_data, (data_label, data_name) in enumerate(self.model_names):
asr, succ_rate, transfer_rate = self.transfer_attack_single(
model, model_label, data_label, data_name
)
results[idx_data, idx_model] = np.array((asr, succ_rate, transfer_rate))
self.attack_results = results
def pre_process(self):
super().pre_process()
self.get_model_lists()
self.load_datas()
def main(self):
self.pre_process()
self.transfer_attack_all()
def save(self, save_dir):
os.makedirs(save_dir, exist_ok=True)
display_names = [x[1] for x in self.model_names]
for i, name in enumerate(["asr", "success", "transfer"]):
a = self.attack_results[:, :, i]
plt.clf()
sns.heatmap(a, xticklabels=[], yticklabels=[])
plt.ylabel("Origin Victim Model", fontsize=13)
plt.xlabel("Transffered Victim Model", fontsize=13)
# plt.xticks(rotation=45, ha='right')
plt.savefig(
os.path.join(save_dir, name + ".png"), bbox_inches="tight", dpi=300
)
xs, ys, names = [], [], []
for i, name in enumerate(
[
None,
"Parsed as Origin Victim Model",
"Parsed as Transferred Victim Model",
]
):
if i == 0:
continue
a = self.attack_results[:, :, i]
x = np.zeros((a.shape[0], a.shape[0] - 1))
t = np.ones_like(a, dtype=bool)
for i in range(a.shape[0]):
t[i, i] = False
x[i] += a[i, i]
a = a.reshape(-1)
t = t.reshape(-1)
x = x.reshape(-1)
y = a[t]
xs.append(x)
ys.append(y)
names += [name] * y.shape[0]
xs = np.concatenate(xs, axis=0) * 100
ys = np.concatenate(ys, axis=0) * 100
names = np.array(names)
plt.clf()
plt.plot([-10, 110], [-10, 110], linestyle="--", color="black")
x_name = "Parsing Accuracy on Victim Model(%)"
y_name = "Ratio of Parsing Result(%)"
legend_name = "Parsing Result Type"
sns.scatterplot(
data={x_name: xs, y_name: ys, legend_name: names},
x=x_name,
y=y_name,
hue=legend_name,
style=legend_name,
)
plt.xlim(-5, 105)
plt.ylim(-5, 105)
plt.savefig(
os.path.join(save_dir, "correlation" + ".png"), bbox_inches="tight", dpi=300
)
if __name__ == "__main__":
save_dir = "./figs/transfer_attacks"
# import shutil
# shutil.rmtree(save_dir, ignore_errors=True)
dataset = "cifar10"
arch = "resnet9"
atk_name = "attack_pgd_eps_8_alpha_1"
attr_arch = "conv4"
setting = "origin"
input_type = "delta"
eval = TransferAttack(dataset, arch, atk_name, attr_arch, setting, input_type)
eval.main()
eval.save(os.path.join(save_dir, atk_name, setting, input_type))
setting = "robust"
eval = TransferAttack(dataset, arch, atk_name, attr_arch, setting, input_type)
eval.main()
eval.save(os.path.join(save_dir, atk_name, setting, input_type))
setting = "origin"
input_type = "x_adv"
eval = TransferAttack(dataset, arch, atk_name, attr_arch, setting, input_type)
eval.main()
eval.save(os.path.join(save_dir, atk_name, setting, input_type))
input_type = "delta"
atk_name = "attack_fgsm_eps_8"
eval = TransferAttack(dataset, arch, atk_name, attr_arch, setting, input_type)
eval.main()
eval.save(os.path.join(save_dir, atk_name, setting, input_type))
atk_name = "attack_zosignsgd_eps_8_norm_Linf"
eval = TransferAttack(dataset, arch, atk_name, attr_arch, setting, input_type)
eval.main()
eval.save(os.path.join(save_dir, atk_name, setting, input_type))
atk_name = "attack_pgd_eps_4_alpha_0.5"
eval = TransferAttack(dataset, arch, atk_name, attr_arch, setting, input_type)
eval.main()
eval.save(os.path.join(save_dir, atk_name, setting, input_type))