-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
180 lines (120 loc) · 8.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import sys
import torch
import numpy as np
import consts
from datasets import ContrastiveDataset, SimpleDataset
from torch.utils.data import DataLoader
from transformers import AutoModel
from data import process_raw_data
from SNN_model import BERT_Arch, SiameseNeuralNetwork
from SNN_training import train_siamese_network
from projection import construct_train_matrix, extract_prototypes, project_to_dissimilarity_space
from SVM_model import ensemble_of_classifiers
from sklearn.model_selection import train_test_split
from transformers import BertTokenizerFast
def predict(projected_test, classifiers_list, categories_order):
pred_y = []
for classifier in classifiers_list:
pred_y.append(classifier.predict_proba(projected_test)[:,1]) # predict_proba returns probabiltiy for class==0 and for class==1, so we take only the probabilities of class==1
pred_y = np.vstack(pred_y) # (num_classifiers, num_samples_test)
highest_predictions = categories_order[np.argmax(pred_y, axis=0)]
print(pred_y)
print(highest_predictions)
return highest_predictions
if __name__ == '__main__':
data_path = sys.argv[1]
# ------------- Data --------------------------
data, test_unseen_categories= process_raw_data(data_path)
train_text, temp_text, train_labels, temp_labels = train_test_split(data['description'], data['labels'],
random_state=42,
test_size=0.3,
stratify=data['labels'])
val_text, test_text, val_labels, test_labels = train_test_split(temp_text, temp_labels,
random_state=42,
test_size=0.5,
stratify=temp_labels)
unseen_train_text, unseen_test_text, unseen_train_labels, unseen_test_labels = train_test_split(
test_unseen_categories['description'], test_unseen_categories['labels'],
random_state=42,
test_size=0.2,
stratify=test_unseen_categories['labels'])
# Tokinization
# Load the BERT tokenizer
model_name = consts.model_name
tokenizer = BertTokenizerFast.from_pretrained(model_name)
# tokenize and encode sequences in the sets set
texts = [train_text, val_text, test_text, unseen_train_text, unseen_test_text]
tokens_texts = []
for text in texts:
tokens_texts.append(
tokenizer.batch_encode_plus(text.tolist(), max_length=consts.MAX_SENTENCE_LENGTh, padding='max_length',
truncation=True))
train_tokinized, val_tokinized, test_tokinized, unseen_train_tokinized, unseen_test_tokinized = tokens_texts
def convert_to_tensors(data, labels):
seq = torch.tensor(data['input_ids'])
mask = torch.tensor(data['attention_mask'])
y = torch.tensor(labels.tolist())
return seq, mask, y
train_seq, train_mask, train_y = convert_to_tensors(train_tokinized, train_labels)
val_seq, val_mask, val_y = convert_to_tensors(val_tokinized, val_labels)
test_seq, test_mask, test_y = convert_to_tensors(test_tokinized, test_labels)
unseen_train_seq, unseen_train_mask, unseen_train_y = convert_to_tensors(unseen_train_tokinized, unseen_train_labels)
unseen_test_seq, unseen_test_mask, unseen_test_y = convert_to_tensors(unseen_test_tokinized, unseen_test_labels)
train_set = ContrastiveDataset(train_seq, train_mask, train_y)
val_set = ContrastiveDataset(val_seq, val_mask, val_y)
test_set = ContrastiveDataset(test_seq, test_mask, test_y)
train_set_simple = SimpleDataset(train_seq, train_mask, train_y)
test_set_simple = SimpleDataset(test_seq, test_mask, test_y)
unseen_train_set_simple = SimpleDataset(unseen_train_seq, unseen_train_mask, unseen_train_y)
unseen_test_set_simple = SimpleDataset(unseen_test_seq, unseen_test_mask, unseen_test_y)
trainLoader = DataLoader(train_set, batch_size=32, shuffle=True, drop_last=False, num_workers=0)
valLoader = DataLoader(val_set, batch_size=32, shuffle=True, drop_last=False, num_workers=0)
testLoader = DataLoader(test_set, batch_size=10, shuffle=False, drop_last=False, num_workers=0)
trainLoader_simple = DataLoader(train_set_simple, batch_size=32, shuffle=False, drop_last=False, num_workers=0)
testLoader_simple = DataLoader(test_set_simple, batch_size=64, shuffle=False, drop_last=False, num_workers=0)
unseen_trainLoader_simple = DataLoader(unseen_train_set_simple, batch_size=64, shuffle=False, drop_last=False,
num_workers=0)
unseen_testLoader_simple = DataLoader(unseen_test_set_simple, batch_size=64, shuffle=False, drop_last=False,
num_workers=0)
# -------------- Parametrs --------------------
model_name = consts.model_name
# ------------- Train SNN --------------------------
# specify GPU
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# import BERT-base pretrained model
bert = AutoModel.from_pretrained(
model_name) # ('bert-base-uncased') 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext'
# freeze all the parameters
for param in bert.parameters():
param.requires_grad = False
# pass the pre-trained BERT to our define architecture
bert_arch = BERT_Arch(bert)
SNN_model = SiameseNeuralNetwork(bert_arch).to(device)
num_epochs = 30
train_loss_history, val_loss_history, similarities_list = train_siamese_network(SNN_model,
dataloaders={"train": trainLoader,
"val": valLoader},
num_epochs=num_epochs,
device=device)
non_matching_similarity, matching_similarity, val_non_matching_similarity, val_matching_similarity = similarities_list
# ----------------- Prototypes Selection ------------------------
train_matrix = construct_train_matrix(SNN_model, trainLoader_simple)
prototypes_list = extract_prototypes(100, trainLoader_simple, train_labels, train_matrix)
# ---------------- Data Projection ------------------------------
projected_train = project_to_dissimilarity_space(trainLoader_simple, SNN_model, prototypes_list)
# ----------------- SVM Ensemble -----------------------------------
classifiers, categories_order = ensemble_of_classifiers(projected_train, train_labels)
# ------------------ Test: Seen categories ---------------------
projected_test = project_to_dissimilarity_space(testLoader_simple, SNN_model, prototypes_list)
preds = predict(projected_test, classifiers, categories_order)
# ------------------ Test: Unseen categories ---------------------
unseen_train_matrix = construct_train_matrix(SNN_model, unseen_trainLoader_simple)
unseen_prototypes_list = extract_prototypes(100, unseen_trainLoader_simple, unseen_train_labels,
unseen_train_matrix)
unseen_projected_train = project_to_dissimilarity_space(unseen_trainLoader_simple, SNN_model,
unseen_prototypes_list)
unseen_classifiers, unseen_categories_order = ensemble_of_classifiers(unseen_projected_train, unseen_train_labels)
unseen_projected_test = project_to_dissimilarity_space(unseen_testLoader_simple, SNN_model, unseen_prototypes_list)
unseen_preds = predict(unseen_projected_test, unseen_classifiers, unseen_categories_order)