-
Notifications
You must be signed in to change notification settings - Fork 56
New issue
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
基于libai复现SegFormer[projects] #342
Comments
YOLO系列的有相关同事在做. 从我个人的角度来说 比较偏向于添加不同任务的模型, 也就是Segformer. 看看其他同事有什么意见 |
嗯我也觉得添加不同任务的模型目前是个不错的选择,另外这里的yolos不是基于卷积的yolo v1-v5等等,是基于transformer的目目标检测, 与DETR也有所不同。这个按任务分类的话可以在分割做完后推进。 |
OneFlow 算子缺失:oneflow.nn.Dropout2d Pytorch文档
dropout2d在图像处理中用的较多,让一个feature map的channel归零,当然类似还有dropout3d |
libai lazycall与flowvision的类型问题:
size为int没问题,是其他的就会报错,因为lazycall后类型改变omegaconf.listconfig.ListConfig |
from libai.config import LazyCall, instantiate
from flowvision import transforms
train_aug = LazyCall(transforms.Compose)(
transforms=[
LazyCall(transforms.RandomResizedCrop)(
size=(512, 1024),
)
]
)
print(instantiate(train_aug))
# (oneflow-dev-gcc7-v2) xiezipeng@vs008:~/libai/xzp$ python test.py
# loaded library: /lib/libibverbs.so.1
# Compose(
# RandomResizedCrop(size=[512, 1024], scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bilinear)
# ) 是这个意思吗,我这好像没问题, @zhanggj821 |
打印是没有问题的,但是将这个数据增强size=( _ , _)应用到数据集上就会类型检查报错,但是我看cifar的数据增强的size也是元组形式,不知道会不会报错,我等下将分支更新一下可以跑看看 |
moudle无参数问题
当在module中设置参数nn.Parameter to_global后打印模型无该参数 |
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
基于transformer的语义分割模型

论文地址
项目目的
预期结果
The text was updated successfully, but these errors were encountered: