-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathbench_blas.py
274 lines (181 loc) · 6.34 KB
/
bench_blas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import pytest
import numpy as np
import openblas_wrap as ow
dtype_map = {
's': np.float32,
'd': np.float64,
'c': np.complex64,
'z': np.complex128,
'dz': np.complex128,
}
# ### BLAS level 1 ###
# dnrm2
dnrm2_sizes = [100, 1000]
def run_dnrm2(n, x, incx, func):
res = func(x, n, incx=incx)
return res
@pytest.mark.parametrize('variant', ['d', 'dz'])
@pytest.mark.parametrize('n', dnrm2_sizes)
def test_nrm2(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
nrm2 = ow.get_func('nrm2', variant)
result = benchmark(run_dnrm2, n, x, 1, nrm2)
# ddot
ddot_sizes = [100, 1000]
def run_ddot(x, y, func):
res = func(x, y)
return res
@pytest.mark.parametrize('n', ddot_sizes)
def test_dot(benchmark, n):
rndm = np.random.RandomState(1234)
x = np.array(rndm.uniform(size=(n,)), dtype=float)
y = np.array(rndm.uniform(size=(n,)), dtype=float)
dot = ow.get_func('dot', 'd')
result = benchmark(run_ddot, x, y, dot)
# daxpy
daxpy_sizes = [100, 1000]
def run_daxpy(x, y, func):
res = func(x, y, a=2.0)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', daxpy_sizes)
def test_daxpy(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
axpy = ow.get_func('axpy', variant)
result = benchmark(run_daxpy, x, y, axpy)
# ### BLAS level 2 ###
gemv_sizes = [100, 1000]
def run_gemv(a, x, y, func):
res = func(1.0, a, x, y=y, overwrite_y=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', gemv_sizes)
def test_dgemv(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.empty(n, dtype=dtyp)
a = np.array(rndm.uniform(size=(n,n)), dtype=dtyp)
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.zeros(n, dtype=dtyp)
gemv = ow.get_func('gemv', variant)
result = benchmark(run_gemv, a, x, y, gemv)
assert result is y
# dgbmv
dgbmv_sizes = [100, 1000]
def run_gbmv(m, n, kl, ku, a, x, y, func):
res = func(m, n, kl, ku, 1.0, a, x, y=y, overwrite_y=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', dgbmv_sizes)
@pytest.mark.parametrize('kl', [1])
def test_dgbmv(benchmark, n, kl, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
y = np.empty(n, dtype=dtyp)
m = n
a = rndm.uniform(size=(2*kl + 1, n))
a = np.array(a, dtype=dtyp, order='F')
gbmv = ow.get_func('gbmv', variant)
result = benchmark(run_gbmv, m, n, kl, kl, a, x, y, gbmv)
assert result is y
# ### BLAS level 3 ###
# dgemm
gemm_sizes = [100, 1000]
def run_gemm(a, b, c, func):
alpha = 1.0
res = func(alpha, a, b, c=c, overwrite_c=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', gemm_sizes)
def test_gemm(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
b = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
c = np.empty((n, n), dtype=dtyp, order='F')
gemm = ow.get_func('gemm', variant)
result = benchmark(run_gemm, a, b, c, gemm)
assert result is c
# dsyrk
syrk_sizes = [100, 1000]
def run_syrk(a, c, func):
res = func(1.0, a, c=c, overwrite_c=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', syrk_sizes)
def test_syrk(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
c = np.empty((n, n), dtype=dtyp, order='F')
syrk = ow.get_func('syrk', variant)
result = benchmark(run_syrk, a, c, syrk)
assert result is c
# ### LAPACK ###
# linalg.solve
gesv_sizes = [100, 1000]
def run_gesv(a, b, func):
res = func(a, b, overwrite_a=True, overwrite_b=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
@pytest.mark.parametrize('n', gesv_sizes)
def test_gesv(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = (np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F') +
np.eye(n, dtype=dtyp, order='F'))
b = np.array(rndm.uniform(size=(n, 1)), dtype=dtyp, order='F')
gesv = ow.get_func('gesv', variant)
lu, piv, x, info = benchmark(run_gesv, a, b, gesv)
assert lu is a
assert x is b
assert info == 0
# linalg.svd
gesdd_sizes = [(100, 5), (1000, 222)]
def run_gesdd(a, lwork, func):
res = func(a, lwork=lwork, full_matrices=False, overwrite_a=False)
return res
@pytest.mark.parametrize('variant', ['s', 'd'])
@pytest.mark.parametrize('mn', gesdd_sizes)
def test_gesdd(benchmark, mn, variant):
m, n = mn
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = np.array(rndm.uniform(size=(m, n)), dtype=dtyp, order='F')
gesdd_lwork = ow.get_func('gesdd_lwork', variant)
lwork, info = gesdd_lwork(m, n)
lwork = int(lwork)
assert info == 0
gesdd = ow.get_func('gesdd', variant)
u, s, vt, info = benchmark(run_gesdd, a, lwork, gesdd)
assert info == 0
atol = {'s': 1e-5, 'd': 1e-13}
np.testing.assert_allclose(u @ np.diag(s) @ vt, a, atol=atol[variant])
# linalg.eigh
syev_sizes = [50, 200]
def run_syev(a, lwork, func):
res = func(a, lwork=lwork, overwrite_a=True)
return res
@pytest.mark.parametrize('variant', ['s', 'd'])
@pytest.mark.parametrize('n', syev_sizes)
def test_syev(benchmark, n, variant):
rndm = np.random.RandomState(1234)
dtyp = dtype_map[variant]
a = rndm.uniform(size=(n, n))
a = np.asarray(a + a.T, dtype=dtyp, order='F')
a_ = a.copy()
dsyev_lwork = ow.get_func('syev_lwork', variant)
lwork, info = dsyev_lwork(n)
lwork = int(lwork)
assert info == 0
syev = ow.get_func('syev', variant)
w, v, info = benchmark(run_syev, a, lwork, syev)
assert info == 0
assert a is v # overwrite_a=True