-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
71 lines (56 loc) · 3.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.optim as optim
import torchvision
from torchvision import datasets, models, transforms
import math
import torch.utils.data as data_utils
import torch.nn.functional as F
from Models import *
from train_utils import*
import torch.utils.data as utils
import pickle
import argparse
import Dataset
import torchsummary
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float, default=0.0001, help='initial_learning_rate')
parser.add_argument('--batch_size', type=int, default=40)
parser.add_argument('--num_classes', type=int, default=2, help='number of classes')
parser.add_argument('--h', type=int, default=3, help='dimension of the hidden layer')
parser.add_argument('--scale', type=float, default=2, help='scaling factor for distance')
parser.add_argument('--reg', type=float, default=1, help='regularization coefficient')
parser.add_argument('--pretrained_imagenet', type=bool, default=True)
parser.add_argument('--l1', type=float, default=1, help='regularization coefficient')
parser.add_argument('--epochs', type=float, default=5)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--stepLR', type=bool, default=False)
parser.add_argument('--adapt_weight', type=int, default=1)
parser.add_argument('--cosine', type=bool, default=False)
parser.add_argument('--synthetic_train_dataset', type=str,default='')
parser.add_argument('--synthetic_val_dataset', type=str,default='')
parser.add_argument('--test_dataset', type=str,default='')
parser.add_argument('--encoder', type=str,default='swin')
args, _ = parser.parse_known_args()
data_dir = args.synthetic_train_dataset
test_dir = args.test_dataset
val_dir = args.synthetic_val_dataset
if data_dir=='' or test_dir=='' or val_dir=='':
print('Give proper data paths')
exit(2)
train_dataset = Dataset.Dataset(data_dir, setting='train', sim=False,original=False)
full_dat = train_dataset
val_set = Dataset.Dataset(val_dir, setting='test', original=False, sim=False)
test_dataset =Dataset.Dataset(test_dir, setting='test', original=False, sim=False)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=44,drop_last=False)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=1)
validation_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=1)
loader = [test_loader,validation_loader]
dataset_train_len=len(train_dataset)
model = NetXd(args.h,args.num_classes,args.scale,encoder=args.encoder)
device='cuda:0'
model = model.to(device)
optimizer_s = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
train_model(model, optimizer_s,args.learning_rate,args.epochs,args.reg, train_loader=train_loader,test_loader=loader,dataset_train_len=dataset_train_len,l1=args.l1,args=args)