-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathlab_s01e10.py
187 lines (135 loc) · 4.78 KB
/
lab_s01e10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from typing import Tuple
import matplotlib.pyplot as plt
import sklearn
import pandas as pd
import darts
from darts.models import ExponentialSmoothing, NaiveDrift, NaiveMean, AutoARIMA, RegressionModel, NaiveSeasonal, Theta
from darts.metrics import mape
from darts.utils.statistics import check_seasonality
def load_and_split_air_passenger() -> Tuple[darts.TimeSeries, darts.TimeSeries]:
df = pd.read_csv('.\..\data\AirPassengers.csv', delimiter=',')
series = darts.TimeSeries.from_dataframe(df, 'Month', '#Passengers')
train, test = series[:-36], series[-36:]
return train, test
def todo_1():
print('pip install "u8darts[torch, pmdarima]"')
def todo_2():
df = pd.read_csv('.\..\data\AirPassengers.csv', delimiter=',')
print(df.describe())
print(df.head(5))
print(df.dtypes)
df.plot()
# plt.show()
series = darts.TimeSeries.from_dataframe(df, 'Month', '#Passengers')
print(series)
plt.figure()
series.plot()
plt.show()
def todo_3():
df = pd.read_csv('.\..\data\AirPassengers.csv', delimiter=',')
series = darts.TimeSeries.from_dataframe(df, 'Month', '#Passengers')
train1, test1 = series[:-36], series[-36:]
train2, test2 = series.split_before(pd.Timestamp('19580101'))
train1.plot()
test1.plot()
plt.show()
train2.plot()
test2.plot()
plt.show()
def todo_4_5():
train, test = load_and_split_air_passenger()
model = NaiveDrift()
model.fit(train)
prediction = model.predict(len(test))
mape_score = mape(actual_series=test, pred_series=prediction)
print(f'{mape_score=} for {model}')
train.plot()
test.plot(label='test')
prediction.plot(label='forecast')
plt.legend()
plt.title(f'{model}')
plt.show()
def todo_6():
train, test = load_and_split_air_passenger()
for m in range(2, 48):
is_seasonal, period = check_seasonality(train, m=m, max_lag=48, alpha=.05)
if is_seasonal:
print(f'There is seasonality of order {period}.')
model = NaiveSeasonal(K=12)
model.fit(train)
prediction = model.predict(len(test))
mape_score = mape(actual_series=test, pred_series=prediction)
print(f'{mape_score=} for {model}')
train.plot()
test.plot(label='test')
prediction.plot(label='forecast')
plt.legend()
plt.title(f'{model}')
plt.show()
def todo_6_last_question():
train, test = load_and_split_air_passenger()
model_drift = NaiveDrift()
model_drift.fit(train)
model_seasonal = NaiveSeasonal(K=12)
model_seasonal.fit(train)
prediction_drift = model_drift.predict(len(test))
prediction_seasonal = model_seasonal.predict(len(test))
prediction_combined = prediction_drift + prediction_seasonal - train.last_value()
mape_score = mape(actual_series=test, pred_series=prediction_combined)
print(f'{mape_score=} for combined {model_drift} and {model_seasonal}')
train.plot()
test.plot(label='test')
prediction_combined.plot(label='prediction_combined')
prediction_drift.plot(label='prediction_drift')
prediction_seasonal.plot(label='prediction_seasonal')
plt.legend()
plt.title(f'{model_drift} + {model_seasonal}')
plt.show()
def todo_7():
train, test = load_and_split_air_passenger()
model_exponential = ExponentialSmoothing()
model_exponential.fit(train)
model_theta = Theta()
model_theta.fit(train)
prediction_exponential = model_exponential.predict(len(test))
mape_score = mape(actual_series=test, pred_series=prediction_exponential)
print(f'{mape_score=} for {model_exponential}')
prediction_theta = model_theta.predict(len(test))
mape_score = mape(actual_series=test, pred_series=prediction_theta)
print(f'{mape_score=} for {model_theta}')
train.plot()
test.plot(label='test')
prediction_exponential.plot(label='prediction_exponential')
prediction_theta.plot(label='prediction_theta')
plt.legend()
plt.show()
def todo_8():
train, test = load_and_split_air_passenger()
model = RegressionModel(60, model=sklearn.ensemble.GradientBoostingRegressor())
model.fit(train)
prediction = model.predict(len(test))
mape_score = mape(actual_series=test, pred_series=prediction)
print(f'{mape_score=} for {model}')
train.plot()
test.plot(label='test')
prediction.plot(label='forecast')
plt.legend()
plt.title(f'{model}')
plt.show()
def todo_9():
# TODO(MF): add support for another csv with data
# TODO(MF): add sample with loading dataset from darts library
darts.datase
df = pd.read_csv('.\..\data\daily_min_temperatures_Melbourne_1981_1990.csv', delimiter=",")
pass
def main():
todo_1()
todo_2()
todo_3()
todo_4_5()
todo_6()
todo_6_last_question()
todo_7()
todo_8()
if __name__ == '__main__':
main()