-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathset_value_op.cc
294 lines (261 loc) · 11.1 KB
/
set_value_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/set_value_op.h"
#include <string>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
template <typename T>
class EmptyGradOpMaker;
} // namespace framework
namespace imperative {
class OpBase;
} // namespace imperative
} // namespace paddle
namespace paddle {
namespace operators {
using Tensor = phi::DenseTensor;
class SetValue : public framework::OperatorWithKernel {
public:
SetValue(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name,
const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
var_name == "StepsTensorList") {
return expected_kernel_type;
}
return framework::OpKernelType(
expected_kernel_type.data_type_, tensor.place(), tensor.layout());
}
};
class SetValueMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
// Input
AddInput("Input", "(Tensor) Input tensor of set_value operator.");
AddInput("ValueTensor", "(Tensor) Value tensor of set_value operator.")
.AsDispensable();
AddInput("StartsTensorList",
"(vector<Tensor<int32>>, optional) If provided, set_value will "
"use this. The shape of the tensor in vector must be [1]."
"It has higher priority compare with attr(starts).")
.AsDuplicable()
.AsDispensable();
AddInput("EndsTensorList",
"(vector<Tensor<int32>>, optional) If provided, set_value will "
"use this. The shape of the tensor in vector must BE [1]."
"It has higher priority compare with attr(ends).")
.AsDuplicable()
.AsDispensable();
AddInput("StepsTensorList",
"(vector<Tensor<int32>>, optional) If provided, set_value will "
"use this. The shape of the tensor in vector must BE [1]."
"It has higher priority compare with attr(steps).")
.AsDuplicable()
.AsDispensable();
// Output
AddOutput("Out",
"(Tensor) Output tensor of set_value operator. The output is the "
"same Tensor as input");
// Attr
AddAttr<int>("dtype", "data type of input.")
.InEnum({framework::proto::VarType::BOOL,
framework::proto::VarType::INT32,
framework::proto::VarType::INT64,
framework::proto::VarType::FP32,
framework::proto::VarType::FP64,
framework::proto::VarType::FP16})
.SetDefault(framework::proto::VarType::FP32);
AddAttr<std::vector<int64_t>>(
"axes", "(list<int64_t>) Axes that `starts` and `ends` apply to.");
AddAttr<std::vector<int64_t>>(
"starts",
"(list<int64_t>) Starting indices of corresponding axis in `axes`.")
.SetDefault({});
AddAttr<std::vector<int64_t>>(
"ends",
"(list<int64_t>) Ending indices of corresponding axis in `axes`.")
.SetDefault({});
AddAttr<std::vector<int64_t>>(
"steps", "(list<int64_t>) Stride step from the start to the end.")
.SetDefault({});
AddAttr<std::vector<int64_t>>("decrease_axes",
"(list<int>) The axes to decrease.")
.SetDefault({});
AddAttr<std::vector<int64_t>>("none_axes", "(list<int>) The axes to none.")
.SetDefault({});
AddAttr<std::vector<int>>("bool_values", "Store the bool values.")
.SetDefault({});
AddAttr<std::vector<float>>("fp32_values", "Store the float32 values.")
.SetDefault({});
AddAttr<std::vector<int>>("int32_values", "Store the int32 values.")
.SetDefault({});
AddAttr<std::vector<int64_t>>("int64_values", "Store the int64 values.")
.SetDefault({});
AddAttr<std::vector<double>>("fp64_values", "Store the float64 values.")
.SetDefault({});
AddAttr<std::vector<float>>("fp16_values", "Store the float16 values.")
.SetDefault({});
AddAttr<std::vector<int64_t>>("shape", "(vector<int64_t>) Shape of values.")
.SetDefault({});
AddComment(R"DOC(SetValue operator.
Assignment to a Tensor in static mode.
)DOC");
}
};
template <typename T>
class SetValueGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
if (this->HasInput("ValueTensor")) {
op->SetType("set_value_grad");
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetInput("ValueTensor", this->Input("ValueTensor"));
if (this->HasInput("StartsTensorList")) {
op->SetInput("StartsTensorList", this->Input("StartsTensorList"));
}
if (this->HasInput("EndsTensorList")) {
op->SetInput("EndsTensorList", this->Input("EndsTensorList"));
}
if (this->HasInput("StepsTensorList")) {
op->SetInput("StepsTensorList", this->Input("StepsTensorList"));
}
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("ValueTensor"),
this->InputGrad("ValueTensor"));
op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
} else {
op->SetType("assign");
op->SetInput("X", this->OutputGrad("Out"));
op->SetOutput("Out", this->InputGrad("Input"));
}
}
};
class SetValueGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
"Input",
framework::GradVarName("Out"),
"set_value_grad");
auto in_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_LT(
in_dims.size(),
7,
platform::errors::InvalidArgument(
"The dimension of set_value_grad operator's input should be less "
"than 7, but received dimension is %d.",
in_dims.size()));
if (ctx->HasOutput(framework::GradVarName("ValueTensor"))) {
ctx->ShareDim("ValueTensor",
/*->*/ framework::GradVarName("ValueTensor"));
ctx->ShareLoD("ValueTensor",
/*->*/ framework::GradVarName("ValueTensor"));
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto in_tensor = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
in_tensor->place());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name,
const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
var_name == "StepsTensorList") {
return expected_kernel_type;
}
return framework::OpKernelType(
expected_kernel_type.data_type_, tensor.place(), tensor.layout());
}
};
DECLARE_INPLACE_OP_INFERER(SetValueOpInplaceInferer, {"Input", "Out"});
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
DECLARE_INFER_SHAPE_FUNCTOR(set_value,
SetValueInferShapeFunctor,
PD_INFER_META(phi::SetValueInferMeta));
REGISTER_OPERATOR(set_value,
ops::SetValue,
ops::SetValueMaker,
ops::SetValueGradMaker<paddle::framework::OpDesc>,
ops::SetValueGradMaker<paddle::imperative::OpBase>,
ops::SetValueOpInplaceInferer,
SetValueInferShapeFunctor);
REGISTER_OPERATOR(set_value_grad, ops::SetValueGrad);
REGISTER_OP_VERSION(set_value)
.AddCheckpoint(
R"ROC(
Upgrade set_value, add 3 inputs [StartsTensorList, EndsTensorList, StepsTensorList] and 1 attribute [steps].
)ROC",
paddle::framework::compatible::OpVersionDesc()
.NewInput("StartsTensorList",
"If provided, set_value will use this.The shape of the "
"tensor in vector must be [1]. It has higher priority "
"compare with attr(starts).")
.NewInput("EndsTensorList",
"If provided, set_value will use this.The shape of the "
"tensor in vector must be [1]. It has higher priority "
"compare with attr(ends).")
.NewInput("StepsTensorList",
"If provided, set_value will use this.The shape of the "
"tensor in vector must be [1]. It has higher priority "
"compare with attr(steps).")
.ModifyAttr("starts",
"Starting indices of corresponding axis in `axes`.",
std::vector<int64_t>{})
.ModifyAttr("ends",
"Ending indices of corresponding axis in `axes`.",
std::vector<int64_t>{})
.NewAttr("steps",
"Stride step from the start to the end.",
std::vector<int64_t>{}))
.AddCheckpoint(
R"ROC(
Upgrade set_value, add 1 attribute [decrease_axes].
)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"decrease_axes", "The axes to decrease.", std::vector<int64_t>{}))
.AddCheckpoint(
R"ROC(
Upgrade set_value, add 1 attribute [none_axes].
)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"none_axes", "The axes with none index.", std::vector<int64_t>{}));