-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathsearchsorted_kernel_impl.h
256 lines (236 loc) · 8.1 KB
/
searchsorted_kernel_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <math.h>
#include "paddle/common/ddim.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/funcs/for_range.h"
namespace phi {
template <typename T1, typename T2, typename OutType>
class GpuAndCpuSearchSortedCompute {
public:
static HOSTDEVICE bool IsNan(float x) {
#ifdef __NVCC__
return ::isnan(x);
#else
return std::isnan(x);
#endif
}
static HOSTDEVICE bool IsNan(double x) {
#ifdef __NVCC__
return ::isnan(x);
#else
return std::isnan(x);
#endif
}
static HOSTDEVICE bool IsNan(int x UNUSED) { return false; }
static HOSTDEVICE bool IsNan(int64_t x UNUSED) { return false; }
static HOSTDEVICE bool IsInf(float x) {
#ifdef __NVCC__
return ::isinf(x);
#else
return std::isinf(x);
#endif
}
static HOSTDEVICE bool IsInf(double x) {
#ifdef __NVCC__
return ::isinf(x);
#else
return std::isinf(x);
#endif
}
static HOSTDEVICE bool IsInf(int x UNUSED) { return false; }
static HOSTDEVICE bool IsInf(int64_t x UNUSED) { return false; }
HOSTDEVICE inline size_t LowerBound(const T1* x, size_t num, const T2& val) {
// @{ Group LowerBound
// The following code is from
// https://en.cppreference.com/w/cpp/algorithm/lower_bound
using MT1 = typename phi::dtype::MPTypeTrait<T1>::Type;
using MT2 = typename phi::dtype::MPTypeTrait<T2>::Type;
MT2 val_mt = static_cast<MT2>(val);
auto* first = x;
int64_t count = static_cast<int64_t>(num);
while (count > 0) {
int64_t step = (count >> 1);
auto* it = first + step;
MT1 it_mt = static_cast<MT1>(*it);
if (it_mt < val_mt) {
first = ++it;
count -= (step + 1);
} else {
count = step;
}
}
return static_cast<size_t>(first - x);
}
HOSTDEVICE inline size_t UpperBound(const T1* x, size_t num, const T2& val) {
// @{ Group UpperBound
// The following code is from
// https://en.cppreference.com/w/cpp/algorithm/upper_bound
using MT1 = typename phi::dtype::MPTypeTrait<T1>::Type;
using MT2 = typename phi::dtype::MPTypeTrait<T2>::Type;
MT2 val_mt = static_cast<MT2>(val);
auto* first = x;
int64_t count = static_cast<int64_t>(num);
while (count > 0) {
auto step = (count >> 1);
auto* it = first + step;
MT1 it_mt = static_cast<MT1>(*it);
if (val_mt < it_mt) {
count = step;
} else {
first = ++it;
count -= (step + 1);
}
}
return static_cast<size_t>(first - x);
}
HOSTDEVICE GpuAndCpuSearchSortedCompute(const T1* sequence_data,
const T2* value_data,
bool right,
bool is_1d_boundaries,
int64_t val_size,
int64_t seq_size,
OutType* out_data)
: sequence_data_(sequence_data),
value_data_(value_data),
right_(right),
is_1d_boundaries_(is_1d_boundaries),
val_size_(val_size),
seq_size_(seq_size),
out_data_(out_data) {}
HOSTDEVICE void operator()(int64_t idx) {
using MT2 = typename phi::dtype::MPTypeTrait<T2>::Type;
const T2* value_ptr = value_data_ + idx;
const MT2 value_mt = static_cast<MT2>(*value_ptr);
const T1* sequence_ptr = is_1d_boundaries_
? sequence_data_
: sequence_data_ + idx / val_size_ * seq_size_;
if (IsInf(value_mt) || IsNan(value_mt)) {
out_data_[idx] = seq_size_;
} else {
if (right_) {
out_data_[idx] = static_cast<OutType>(
UpperBound(sequence_ptr, seq_size_, *value_ptr));
} else {
out_data_[idx] = static_cast<OutType>(
LowerBound(sequence_ptr, seq_size_, *value_ptr));
}
}
}
private:
const T1* sequence_data_;
const T2* value_data_;
bool right_;
bool is_1d_boundaries_;
int64_t val_size_;
int64_t seq_size_;
OutType* out_data_;
};
template <typename Context, typename T1, typename OutType>
class SearchSortedFunctor {
public:
SearchSortedFunctor(const Context& context,
const DenseTensor* sorted_sequence,
const DenseTensor* value,
bool right,
OutType* out_data)
: context_(context),
sorted_sequence_(sorted_sequence),
value_(value),
right_(right),
out_data_(out_data) {}
template <typename T2>
void apply() {
const T1* sequence_data = sorted_sequence_->data<T1>();
const T2* value_data = value_->data<T2>();
const phi::DDim& seq_dims = sorted_sequence_->dims();
const phi::DDim& val_dims = value_->dims();
bool is_1d_boundaries = seq_dims.size() == 1;
int64_t val_size = 0;
int64_t seq_size = 0;
if (val_dims.size()) {
val_size = val_dims[val_dims.size() - 1];
} else {
val_size = 1;
}
if (seq_dims.size()) {
seq_size = seq_dims[seq_dims.size() - 1];
} else {
seq_size = 1;
}
funcs::ForRange<Context> for_range(context_, value_->numel());
GpuAndCpuSearchSortedCompute<T1, T2, OutType>
gpu_and_cpu_search_sorted_compute(sequence_data,
value_data,
right_,
is_1d_boundaries,
val_size,
seq_size,
out_data_);
for_range(gpu_and_cpu_search_sorted_compute);
}
private:
const Context& context_;
const DenseTensor* sorted_sequence_;
const DenseTensor* value_;
bool right_;
OutType* out_data_;
};
template <typename Visitor>
void VisitDataTypeForSearchSorted(DataType type, Visitor visitor) {
if (type == DataType::FLOAT32) {
visitor.template apply<float>();
} else if (type == DataType::FLOAT64) {
visitor.template apply<double>();
} else if (type == DataType::INT32) {
visitor.template apply<int>();
} else if (type == DataType::INT64) {
visitor.template apply<int64_t>();
} else if (type == DataType::FLOAT16) {
visitor.template apply<phi::dtype::float16>();
} else if (type == DataType::BFLOAT16) {
visitor.template apply<phi::dtype::bfloat16>();
} else {
PADDLE_THROW(errors::InvalidArgument(
"The received values data type %s can not meet input requirements. "
"Because the given values data type of searchsorted operators must be "
"bfloat16, float16, float32, float64, int32 or int64. Please input "
"appropriate "
"sorted_sequence again! ",
type));
}
}
template <typename T, typename Context>
void SearchsortedKernel(const Context& ctx,
const DenseTensor& sorted_sequence,
const DenseTensor& value,
bool out_int32,
bool right,
DenseTensor* out) {
if (out_int32) {
ctx.template Alloc<int>(out);
int* out_data = out->data<int>();
SearchSortedFunctor<Context, T, int> functor(
ctx, &sorted_sequence, &value, right, out_data);
VisitDataTypeForSearchSorted(value.dtype(), functor);
} else {
ctx.template Alloc<int64_t>(out);
int64_t* out_data = out->data<int64_t>();
SearchSortedFunctor<Context, T, int64_t> functor(
ctx, &sorted_sequence, &value, right, out_data);
VisitDataTypeForSearchSorted(value.dtype(), functor);
}
}
} // namespace phi