Skip to content

Latest commit

 

History

History
54 lines (34 loc) · 2.22 KB

README_cn.md

File metadata and controls

54 lines (34 loc) · 2.22 KB

English | 简体中文

特色垂类检测模型

我们提供了针对不同场景的基于PaddlePaddle的检测模型,用户可以下载模型进行使用。

任务 算法 精度(Box AP) 下载 配置文件
车辆检测 YOLOv3 54.5 下载链接 配置文件

车辆检测(Vehicle Detection)

车辆检测的主要应用之一是交通监控。在这样的监控场景中,待检测的车辆多为道路红绿灯柱上的摄像头拍摄所得。

1. 模型结构

Backbone为Dacknet53的YOLOv3。

2. 训练参数配置

PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件yolov3_darknet53_270e_coco.yml,与之相比,在进行车辆检测的模型训练时,我们对以下参数进行了修改:

  • num_classes: 6
  • anchors: [[8, 9], [10, 23], [19, 15], [23, 33], [40, 25], [54, 50], [101, 80], [139, 145], [253, 224]]
  • nms/nms_top_k: 400
  • nms/score_threshold: 0.005
  • dataset_dir: dataset/vehicle

3. 精度指标

模型在我们内部数据上的精度指标为:

IOU=.50:.05:.95时的AP为 0.545。

IOU=.5时的AP为 0.764。

4. 预测

用户可以使用我们训练好的模型进行车辆检测:

export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/vehicle/vehicle_yolov3_darknet.yml \
                         -o weights=https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams \
                         --infer_dir configs/vehicle/demo \
                         --draw_threshold 0.2 \
                         --output_dir configs/vehicle/demo/output

预测结果示例: