-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
163 lines (123 loc) · 5.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from elements.yolo import YOLO, YOLO_Sign
from elements.PINet import LaneDetection
from elements.SGD import SGDepth_Model
from elements.light_classifier import light_classifier
from elements.asset import plot_object_colors, depth_estimator, apply_mask, apply_all_mask, ROI, plot_one_box, ui, horiz_lines
import numpy as np
import os
import cv2
from time import time as t
import sys
from datetime import timedelta
from SGDepth.arguments import InferenceEvaluationArguments
opt = InferenceEvaluationArguments().parse()
if opt.noshow and not opt.save:
print("You're not getting any outputs!!\nExit")
sys.exit()
# Load Models
detector = YOLO()
sign_detector = YOLO_Sign(opt.weights_sign)
light_detector = light_classifier(opt.weights_light)
lane_detector = LaneDetection(opt.culane_model)
depth_seg_estimator = SGDepth_Model(opt.disp_detector)
# Video Writer
cap = cv2.VideoCapture(opt.video)
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)
w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
resize = not ((w == 1280) and (h == 720))
if opt.save:
if len(opt.output_name.split('.'))==1:
opt.output_name += '.mp4'
output_video_folder = os.path.join('outputs/', opt.output_name.split('.')[0])
if opt.save_frames:
output_frames_folder = os.path.join(output_video_folder, 'frames')
os.makedirs(output_frames_folder, exist_ok=True)
output_video_name = os.path.join(output_video_folder, opt.output_name)
os.makedirs(output_video_folder, exist_ok = True)
print(output_video_folder)
w = cap.get(cv2.CAP_PROP_FRAME_WIDTH) + 280
h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
out = cv2.VideoWriter(output_video_name,
cv2.VideoWriter_fourcc(*'mp4v'),
opt.outputfps, (int(w), int(h)))
# Create color palettes for visualization
obj_colors, sign_colors = plot_object_colors()
frame_num = 0
total_fps = []
while(cap.isOpened()):
ret, frame = cap.read()
frame_num += 1
if not frame_num % opt.frame_drop == 0:
continue
if ret:
tc = t() # Start Time
if resize:
frame = cv2.resize(frame , (int(1280),int(720)))
main_frame = frame.copy()
yoloOutput = detector.detect(frame)
signOutput = sign_detector.detect_sign(frame)
depth, seg_img = depth_seg_estimator.inference(frame)
# # Dynamic ROI Generation
masked_image = ROI(main_frame, seg_img)
# ### Sidewalk detection ###
if opt.mode != 'night':
frame = apply_mask(frame, seg_img, mode = opt.mode)
# ### Lane Detection ###
frame = lane_detector.detect_lane(frame, masked_image)
# ### Object Detection ###
depth_values = []
for obj in yoloOutput.values:
xyxy = [int(obj[0]), int(obj[1]), int(obj[2]), int(obj[3])] # [Xmin, Ymin, Xmax, Ymax]
if obj[-2] in ['traffic light', 'stop sign', 'pedestrian'] :
plot_one_box(xyxy, frame, label=obj[-2], color=obj_colors[obj[-2]], line_thickness=3)
else:
### Distance Measurement ###
obj_area = (xyxy[3] - xyxy[1]) * (xyxy[2] - xyxy[0])
if obj_area > 6000:
depth_value = depth_estimator(xyxy, depth=depth, seg=seg_img, obj_name=obj[-1], mask_state=False)
depth_values.append(depth_value)
plot_one_box(xyxy, frame, distance=depth_value, label=obj[-2], color=obj_colors[obj[-2]], line_thickness=3)
else:
plot_one_box(xyxy, frame, label=obj[-2], color=obj_colors[obj[-2]], line_thickness=3)
### Sign Detection ###
for # signOutput.values:
xyxy = [sign[0], sign[1], sign[2], sign[3]]
plot_one_box(xyxy, frame, label=sign[-1], color=sign_colors[sign[-1]], line_thickness=3)
# ### Cross Walk Lines ###
# # frame = horiz_lines(main_frame, frame, mode = opt.mode)
### UI ###
ui_bg = ui(main_frame, yoloOutput, light_detector, signOutput, depth_values)
frame = cv2.hconcat([frame, ui_bg])
t2 = t() # End of frame time
fps = (1/(t2-tc))
avg_fps = np.round(fps , 3)
estimated_time = (frame_count - frame_num) / avg_fps
estimated_time = str(timedelta(seconds=estimated_time)).split('.')[0]
s = "FPS : "+ str(fps)
if opt.fps:
cv2.putText(frame, s, (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness= 2)
# Saving the output
if opt.save:
out.write(frame)
if opt.save_frames:
cv2.imwrite(os.path.join(output_frames_folder , '{0:04d}.jpg'.format(int(frame_num))) , frame)
if not opt.noshow:
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
sys.stdout.write(
"\r[Input Video : %s] [%d/%d Frames Processed] [FPS : %f] [ET : %s]"
% (
opt.video,
frame_num,
frame_count,
fps,
estimated_time
)
)
cap.release()
if not opt.noshow:
cv2.destroyAllWindows()