-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstreamcluster_skepu.cpp
974 lines (813 loc) · 25.1 KB
/
streamcluster_skepu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/*
* Copyright (C) 2008 Princeton University
* All rights reserved.
* Authors: Jia Deng, Gilberto Contreras
*
* streamcluster - Online clustering algorithm
*
* SkePU2 version implemented by Daniele De Sensi (d.desensi.software@gmail.com)
*/
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <sys/resource.h>
#include <limits.h>
#include <skepu2.hpp>
#ifdef ENABLE_PARSEC_HOOKS
#include <hooks.h>
#endif
using namespace std;
#define MAXNAMESIZE 1024 // max filename length
#define SEED 1
/* increase this to reduce probability of random error */
/* increasing it also ups running time of "speedy" part of the code */
/* SP = 1 seems to be fine */
#define SP 1 // number of repetitions of speedy must be >=1
/* higher ITER --> more likely to get correct # of centers */
/* higher ITER also scales the running time almost linearly */
#define ITER 3 // iterate ITER* k log k times; ITER >= 1
#define CACHE_LINE 32 // cache line in byte
/* this structure represents a point */
/* these will be passed around to avoid copying coordinates */
typedef struct {
float weight;
float *coord;
long assign; /* number of point where this one is assigned */
float cost; /* cost of that assignment, weight*distance */
} Point;
/* this is the array of points */
typedef struct {
long num; /* number of points; may not be N if this is a sample */
int dim; /* dimensionality */
Point *p; /* the array itself */
} Points;
static bool *switch_membership; //whether to switch membership in pgain
static bool* is_center; //whether a point is a center
static int* center_table; //index table of centers
static int nproc; //# of threads
float dist(Point p1, Point p2, int dim);
/********************************************/
int isIdentical(float *i, float *j, int D)
// tells whether two points of D dimensions are identical
{
int a = 0;
int equal = 1;
while (equal && a < D) {
if (i[a] != j[a]) equal = 0;
else a++;
}
if (equal) return 1;
else return 0;
}
/* comparator for floating point numbers */
static int floatcomp(const void *i, const void *j)
{
float a, b;
a = *(float *)(i);
b = *(float *)(j);
if (a > b) return (1);
if (a < b) return (-1);
return(0);
}
/* shuffle points into random order */
void shuffle(Points *points)
{
long i, j;
Point temp;
for (i=0;i<points->num-1;i++) {
j=(lrand48()%(points->num - i)) + i;
temp = points->p[i];
points->p[i] = points->p[j];
points->p[j] = temp;
}
}
/* shuffle an array of integers */
void intshuffle(int *intarray, int length)
{
long i, j;
int temp;
for (i=0;i<length;i++) {
j=(lrand48()%(length - i))+i;
temp = intarray[i];
intarray[i]=intarray[j];
intarray[j]=temp;
}
}
/* compute Euclidean distance squared between two points */
float dist(Point p1, Point p2, int dim)
{
int i;
float result=0.0;
for (i=0;i<dim;i++)
result += (p1.coord[i] - p2.coord[i])*(p1.coord[i] - p2.coord[i]);
return(result);
}
Point pspeedyMapFunction(Point p, Point x, int dim){
float distance = dist(p, x, dim);
p.assign = 0;
p.cost = distance * p.weight;
return p;
}
Point pspeedyMapFunction2(Point p, int dim, Point x, int i){
float distance = dist(x, p, dim);
if(distance*p.weight < p.cost){
p.cost = distance * p.weight;
p.assign = i;
}
return p;
}
float pspeedy(Points *points, float z, long *kcenter)
{
/*In this case the different parallel parts have been implemented by using
* parallel for (essentially Map) over all the points*/
double totalcost;
int i;
auto map = skepu2::Map<1>(pspeedyMapFunction);
auto spec = skepu2::BackendSpec{skepu2::Backend::Type::OpenMP};
spec.setCPUThreads(nproc);
map.setBackend(spec);
skepu2::Vector<Point> points_sk(points->p, points->num, false);
map(points_sk, points_sk, points->p[0], points->dim);
auto map2 = skepu2::Map<1>(pspeedyMapFunction2);
map2.setBackend(spec);
*kcenter = 1;
for(i = 1; i < points->num; i++ ) {
bool to_open = ((float)lrand48()/(float)INT_MAX)<(points->p[i].cost/z);
if( to_open ) {
(*kcenter)++;
map2(points_sk, points_sk, points->dim, points->p[i], i);
}
}
totalcost=z*(*kcenter);
for(int i=0;i<points->num;i++)
totalcost+=points->p[i].cost;
return(totalcost);
}
/* For a given point x, find the cost of the following operation:
* -- open a facility at x if there isn't already one there,
* -- for points y such that the assignment distance of y exceeds dist(y, x),
* make y a member of x,
* -- for facilities y such that reassigning y and all its members to x
* would save cost, realize this closing and reassignment.
*
* If the cost of this operation is negative (i.e., if this entire operation
* saves cost), perform this operation and return the amount of cost saved;
* otherwise, do nothing.
*/
/* numcenters will be updated to reflect the new number of centers */
/* z is the facility cost, x is the number of this point in the array
points */
double pgainMapFunction(skepu2::Index1D index, double* work_mem, int stride, long bsize, Points* points, long x){
long k1 = bsize*index.i;
long k2 = k1 + bsize;
if (index.i == nproc-1) k2 = points->num;
double cost_of_opening_x = 0;
//my *lower* fields
double* lower = &work_mem[index.i*stride];
for (int i = k1; i < k2; i++ ) {
float x_cost = dist(points->p[i], points->p[x], points->dim)
* points->p[i].weight;
float current_cost = points->p[i].cost;
if ( x_cost < current_cost ) {
// point i would save cost just by switching to x
// (note that i cannot be a median,
// or else dist(p[i], p[x]) would be 0)
switch_membership[i] = 1;
cost_of_opening_x += x_cost - current_cost;
} else {
// cost of assigning i to x is at least current assignment cost of i
// consider the savings that i's **current** median would realize
// if we reassigned that median and all its members to x;
// note we've already accounted for the fact that the median
// would save z by closing; now we have to subtract from the savings
// the extra cost of reassigning that median and its members
int assign = points->p[i].assign;
lower[center_table[assign]] += current_cost - x_cost;
}
}
return cost_of_opening_x;
}
double pgainMapFunction2(skepu2::Index1D index, double cost_of_opening_x, double* work_mem, int stride, double* gl_lower, long bsize, long num, double z, long x, int K){
int number_of_centers_to_close = 0;
long k1 = bsize*index.i;
long k2 = k1 + bsize;
if (index.i == nproc-1) k2 = num;
// at this time, we can calculate the cost of opening a center
// at x; if it is negative, we'll go through with opening it
for ( int i = k1; i < k2; i++ ) {
if( is_center[i] ) {
double low = z;
//aggregate from all threads
for( int p = 0; p < nproc; p++ ) {
low += work_mem[center_table[i]+p*stride];
}
gl_lower[center_table[i]] = low; //ok, questa non e'
if ( low > 0 ) {
// i is a median, and
// if we were to open x (which we still may not) we'd close i
// note, we'll ignore the following quantity unless we do open x
++number_of_centers_to_close;
cost_of_opening_x -= low;
}
}
}
//use the rest of working memory to store the following
work_mem[index.i*stride + K] = number_of_centers_to_close;
work_mem[index.i*stride + K+1] = cost_of_opening_x;
return cost_of_opening_x;
}
double pgainMapFunction3(skepu2::Index1D index, long bsize, double* gl_lower, Points* points, long x){
long k1 = bsize*index.i;
long k2 = k1 + bsize;
if (index.i == nproc-1) k2 = points->num;
for ( int i = k1; i < k2; i++ ) {
bool close_center = gl_lower[center_table[points->p[i].assign]] > 0 ;
if ( switch_membership[i] || close_center ) {
// Either i's median (which may be i itself) is closing,
// or i is closer to x than to its current median
points->p[i].cost = points->p[i].weight *
dist(points->p[i], points->p[x], points->dim);
points->p[i].assign = x;
}
}
for( int i = k1; i < k2; i++ ) {
if( is_center[i] && gl_lower[center_table[i]] > 0 ) {
is_center[i] = false;
}
}
if( x >= k1 && x < k2 ) {
is_center[x] = true;
}
return 0;
}
double pgain(long x, Points *points, double z, long int *numcenters)
{
int i;
double *work_mem;
double gl_cost_of_opening_x = 0;
int gl_number_of_centers_to_close = 0;
//each thread takes a block of working_mem.
int stride = *numcenters+2;
//make stride a multiple of CACHE_LINE
int cl = CACHE_LINE/sizeof(double);
if( stride % cl != 0 ) {
stride = cl * ( stride / cl + 1);
}
int K = stride -2 ; // K==*numcenters
skepu2::Vector<double> cost_of_opening_x(nproc);
work_mem = (double*) malloc(stride*(nproc+1)*sizeof(double));
/*For each center, we have a *lower* field that indicates
how much we will save by closing the center.
Each thread has its own copy of the *lower* fields as an array.
We first build a table to index the positions of the *lower* fields.
*/
long bsize = points->num/nproc;
for( int p = 0; p < nproc; p++ ) {
long k1 = bsize*p;
long k2 = k1 + bsize;
if(p == nproc-1) {
k2 = points->num;
}
int count = 0;
for(int i = k1; i < k2; i++ ) {
if( is_center[i] ) {
center_table[i] = count++;
}
}
work_mem[p*stride] = count;
}
int accum = 0;
for( int p = 0; p < nproc; p++ ) {
int tmp = (int)work_mem[p*stride];
work_mem[p*stride] = accum;
accum += tmp;
}
for( int p = 0; p < nproc; p++ ) {
long k1 = bsize*p;
long k2 = k1 + bsize;
if(p == nproc-1) {
k2 = points->num;
}
for( int i = k1; i < k2; i++ ) {
if( is_center[i] ) {
center_table[i] += (int)work_mem[p*stride];
}
}
}
//now we finish building the table. clear the working memory.
memset(switch_membership , 0, points->num*sizeof(bool));
memset(work_mem, 0, stride*(nproc+1)*sizeof(double));
//global *lower* fields
double* gl_lower = &work_mem[nproc*stride];
auto map = skepu2::Map<0>(pgainMapFunction);
auto spec = skepu2::BackendSpec{skepu2::Backend::Type::OpenMP};
spec.setCPUThreads(nproc);
map.setBackend(spec);
map(cost_of_opening_x, work_mem, stride, bsize, points, x);
auto map2 = skepu2::Map<1>(pgainMapFunction2);
map2.setBackend(spec);
map2(cost_of_opening_x, cost_of_opening_x, work_mem, stride, gl_lower, bsize, points->num, z, x, K);
gl_cost_of_opening_x = z;
//aggregate
for( int p = 0; p < nproc; p++ ) {
gl_number_of_centers_to_close += (int)work_mem[p*stride + K];
gl_cost_of_opening_x += work_mem[p*stride+K+1];
}
// Now, check whether opening x would save cost; if so, do it, and
// otherwise do nothing
if ( gl_cost_of_opening_x < 0 ) {
// we'd save money by opening x; we'll do it
auto map3 = skepu2::Map<0>(pgainMapFunction3);
map3.setBackend(spec);
skepu2::Vector<double> dummy(nproc);
map3(dummy, bsize, gl_lower, points, x);
*numcenters = *numcenters + 1 - gl_number_of_centers_to_close;
}
else {
gl_cost_of_opening_x = 0; // the value we'll return
}
free(work_mem);
// free(is_center);
// free(switch_membership);
// free(proc_cost_of_opening_x);
// free(proc_number_of_centers_to_close);
return -gl_cost_of_opening_x;
}
/* facility location on the points using local search */
/* z is the facility cost, returns the total cost and # of centers */
/* assumes we are seeded with a reasonable solution */
/* cost should represent this solution's cost */
/* halt if there is < e improvement after iter calls to gain */
/* feasible is an array of numfeasible points which may be centers */
float pFL(Points *points, int *feasible, int numfeasible,
float z, long *k, double cost, long iter, float e)
{
/* This is executed sequentially
*/
long i;
long x;
double change;
long numberOfPoints;
change = cost;
/* continue until we run iter iterations without improvement */
/* stop instead if improvement is less than e */
while (change/cost > 1.0*e) {
change = 0.0;
numberOfPoints = points->num;
/* randomize order in which centers are considered */
intshuffle(feasible, numfeasible);
for (i=0;i<iter;i++) {
x = i%numfeasible;
change += pgain(feasible[x], points, z, k);
}
cost -= change;
}
return(cost);
}
int selectfeasible_fast(Points *points, int **feasible, int kmin)
{
int numfeasible = points->num;
if (numfeasible > (ITER*kmin*log((double)kmin)))
numfeasible = (int)(ITER*kmin*log((double)kmin));
*feasible = (int *)malloc(numfeasible*sizeof(int));
float* accumweight;
float totalweight;
/*
Calcuate my block.
For now this routine does not seem to be the bottleneck, so it is not parallelized.
When necessary, this can be parallelized by setting k1 and k2 to
proper values and calling this routine from all threads ( it is called only
by thread 0 for now ).
Note that when parallelized, the randomization might not be the same and it might
not be difficult to measure the parallel speed-up for the whole program.
*/
// long bsize = numfeasible;
long k1 = 0;
long k2 = numfeasible;
float w;
int l,r,k;
/* not many points, all will be feasible */
if (numfeasible == points->num) {
for (int i=k1;i<k2;i++)
(*feasible)[i] = i;
return numfeasible;
}
accumweight= (float*)malloc(sizeof(float)*points->num);
accumweight[0] = points->p[0].weight;
totalweight=0;
for( int i = 1; i < points->num; i++ ) {
accumweight[i] = accumweight[i-1] + points->p[i].weight;
}
totalweight=accumweight[points->num-1];
for(int i=k1; i<k2; i++ ) {
w = (lrand48()/(float)INT_MAX)*totalweight;
//binary search
l=0;
r=points->num-1;
if( accumweight[0] > w ) {
(*feasible)[i]=0;
continue;
}
while( l+1 < r ) {
k = (l+r)/2;
if( accumweight[k] > w ) {
r = k;
}
else {
l=k;
}
}
(*feasible)[i]=r;
}
free(accumweight);
return numfeasible;
}
double sum(double a, double b){
return a+b;
}
double pkmedianMapFunction(Point p, Point x, long dim){
return dist(p, x, dim)*p.weight;
}
float pkmedian(Points *points, long kmin, long kmax, long* kfinal)
{
int i;
double cost;
double lastcost;
double hiz, loz, z;
static long k;
static int *feasible;
static int numfeasible;
double* hizs;
hiz = loz = 0.0;
long numberOfPoints = points->num;
long ptDimension = points->dim;
//ParFor+Reduce: compute distances from the first point
hizs = (double*)calloc(points->num, sizeof(double));
auto mapReduce = skepu2::MapReduce<1>(pkmedianMapFunction, sum);
auto spec = skepu2::BackendSpec{skepu2::Backend::Type::OpenMP};
spec.setCPUThreads(nproc);
mapReduce.setBackend(spec);
skepu2::Vector<Point> points_sk(points->p, points->num, false);
hiz = mapReduce(points_sk, points->p[0], ptDimension);
loz=0.0; z = (hiz+loz)/2.0;
/* Check whether more centers than points! */
// This is again a parfor
if (points->num <= kmax) {
/* just return all points as facilities */
for(long idx = 0; idx < points->num; idx++){
points->p[idx].assign = idx;
points->p[idx].cost = 0;
}
cost = 0;
free(hizs);
*kfinal = k;
return cost;
}
shuffle(points);
cost = pspeedy(points, z, &k);
i=0;
/* give speedy SP chances to get at least kmin/2 facilities */
while ((k < kmin)&&(i<SP)) {
cost = pspeedy(points, z, &k);
i++;
}
/* if still not enough facilities, assume z is too high */
while (k < kmin) {
if (i >= SP) {hiz=z; z=(hiz+loz)/2.0; i=0;}
shuffle(points);
cost = pspeedy(points, z, &k);
i++;
}
/* now we begin the binary search for real */
/* must designate some points as feasible centers */
/* this creates more consistancy between FL runs */
/* helps to guarantee correct # of centers at the end */
numfeasible = selectfeasible_fast(points,&feasible,kmin);
for( int i = 0; i< points->num; i++ ) {
is_center[points->p[i].assign]= true;
}
while(1) {
/* first get a rough estimate on the FL solution */
lastcost = cost;
cost = pFL(points, feasible, numfeasible,
z, &k, cost, (long)(ITER*kmax*log((double)kmax)), 0.1);
/* if number of centers seems good, try a more accurate FL */
if (((k <= (1.1)*kmax)&&(k >= (0.9)*kmin))||
((k <= kmax+2)&&(k >= kmin-2))) {
/* may need to run a little longer here before halting without
improvement */
cost = pFL(points, feasible, numfeasible,
z, &k, cost, (long)(ITER*kmax*log((double)kmax)), 0.001);
}
if (k > kmax) {
/* facilities too cheap */
/* increase facility cost and up the cost accordingly */
loz = z; z = (hiz+loz)/2.0;
cost += (z-loz)*k;
}
if (k < kmin) {
/* facilities too expensive */
/* decrease facility cost and reduce the cost accordingly */
hiz = z; z = (hiz+loz)/2.0;
cost += (z-hiz)*k;
}
/* if k is good, return the result */
/* if we're stuck, just give up and return what we have */
if (((k <= kmax)&&(k >= kmin))||((loz >= (0.999)*hiz)) )
{
break;
}
}
//clean up...
free(feasible);
free(hizs);
*kfinal = k;
return cost;
}
/* compute the means for the k clusters */
int contcenters(Points *points)
{
long i, ii;
float relweight;
for (i=0;i<points->num;i++) {
/* compute relative weight of this point to the cluster */
if (points->p[i].assign != i) {
relweight=points->p[points->p[i].assign].weight + points->p[i].weight;
relweight = points->p[i].weight/relweight;
for (ii=0;ii<points->dim;ii++) {
points->p[points->p[i].assign].coord[ii]*=1.0-relweight;
points->p[points->p[i].assign].coord[ii]+=
points->p[i].coord[ii]*relweight;
}
points->p[points->p[i].assign].weight += points->p[i].weight;
}
}
return 0;
}
/* copy centers from points to centers */
void copycenters(Points *points, Points* centers, long* centerIDs, long offset)
{
long i;
long k;
bool *is_a_median = (bool *) calloc(points->num, sizeof(bool));
/* mark the centers */
for ( i = 0; i < points->num; i++ ) {
is_a_median[points->p[i].assign] = 1;
}
k=centers->num;
/* count how many */
for ( i = 0; i < points->num; i++ ) {
if ( is_a_median[i] ) {
memcpy( centers->p[k].coord, points->p[i].coord, points->dim * sizeof(float));
centers->p[k].weight = points->p[i].weight;
centerIDs[k] = i + offset;
k++;
}
}
centers->num = k;
free(is_a_median);
}
struct pkmedian_arg_t
{
Points* points;
long kmin;
long kmax;
long* kfinal;
int pid;
pthread_barrier_t* barrier;
};
void* localSearchSub(void* arg_) {
pkmedian_arg_t* arg= (pkmedian_arg_t*)arg_;
pkmedian(arg->points,arg->kmin,arg->kmax,arg->kfinal);
return NULL;
}
void localSearch( Points* points, long kmin, long kmax, long* kfinal ) {
pkmedian_arg_t arg;
arg.points = points;
arg.kmin = kmin;
arg.kmax = kmax;
arg.pid = 0;
arg.kfinal = kfinal;
arg.barrier = NULL;
localSearchSub(&arg);
}
class PStream {
public:
virtual size_t read( float* dest, int dim, int num ) = 0;
virtual int ferror() = 0;
virtual int feof() = 0;
virtual ~PStream() {
}
};
//synthetic stream
class SimStream : public PStream {
public:
SimStream(long n_ ) {
n = n_;
}
size_t read( float* dest, int dim, int num ) {
size_t count = 0;
for( int i = 0; i < num && n > 0; i++ ) {
for( int k = 0; k < dim; k++ ) {
dest[i*dim + k] = lrand48()/(float)INT_MAX;
}
n--;
count++;
}
return count;
}
int ferror() {
return 0;
}
int feof() {
return n <= 0;
}
~SimStream() {
}
private:
long n;
};
class FileStream : public PStream {
public:
FileStream(char* filename) {
fp = fopen( filename, "rb");
if( fp == NULL ) {
fprintf(stderr,"error opening file %s\n.",filename);
exit(1);
}
}
size_t read( float* dest, int dim, int num ) {
return std::fread(dest, sizeof(float)*dim, num, fp);
}
int ferror() {
return std::ferror(fp);
}
int feof() {
return std::feof(fp);
}
~FileStream() {
fprintf(stderr,"closing file stream\n");
fclose(fp);
}
private:
FILE* fp;
};
void outcenterIDs( Points* centers, long* centerIDs, char* outfile ) {
FILE* fp = fopen(outfile, "w");
if( fp==NULL ) {
fprintf(stderr, "error opening %s\n",outfile);
exit(1);
}
int* is_a_median = (int*)calloc( sizeof(int), centers->num );
for( int i =0 ; i< centers->num; i++ ) {
is_a_median[centers->p[i].assign] = 1;
}
for( int i = 0; i < centers->num; i++ ) {
if( is_a_median[i] ) {
fprintf(fp, "%u\n", centerIDs[i]);
fprintf(fp, "%lf\n", centers->p[i].weight);
for( int k = 0; k < centers->dim; k++ ) {
fprintf(fp, "%lf ", centers->p[i].coord[k]);
}
fprintf(fp,"\n\n");
}
}
fclose(fp);
}
void streamCluster( PStream* stream,
long kmin, long kmax, int dim,
long chunksize, long centersize, char* outfile )
{
float* block = (float*)malloc( chunksize*dim*sizeof(float) );
float* centerBlock = (float*)malloc(centersize*dim*sizeof(float) );
long* centerIDs = (long*)malloc(centersize*dim*sizeof(long));
if( block == NULL ) {
fprintf(stderr,"not enough memory for a chunk!\n");
exit(1);
}
Points points;
points.dim = dim;
points.num = chunksize;
points.p = (Point *)malloc(chunksize*sizeof(Point));
for( int i = 0; i < chunksize; i++ ) {
points.p[i].coord = &block[i*dim];
}
Points centers;
centers.dim = dim;
centers.p = (Point *)malloc(centersize*sizeof(Point));
centers.num = 0;
for( int i = 0; i< centersize; i++ ) {
centers.p[i].coord = ¢erBlock[i*dim];
centers.p[i].weight = 1.0;
}
long IDoffset = 0;
long kfinal;
while(1) {
size_t numRead = stream->read(block, dim, chunksize );
fprintf(stderr,"read %d points\n",numRead);
if( stream->ferror() || numRead < (unsigned int)chunksize && !stream->feof() ) {
fprintf(stderr, "error reading data!\n");
exit(1);
}
points.num = numRead;
for( int i = 0; i < points.num; i++ ) {
points.p[i].weight = 1.0;
}
switch_membership = (bool*)malloc(points.num*sizeof(bool));
is_center = (bool*)calloc(points.num,sizeof(bool));
center_table = (int*)calloc(points.num,sizeof(int));
//fprintf(stderr,"center_table = 0x%08x\n",(int)center_table);
//fprintf(stderr,"is_center = 0x%08x\n",(int)is_center);
localSearch(&points,kmin, kmax,&kfinal); // parallel
//fprintf(stderr,"finish local search\n");
contcenters(&points); /* sequential */
if( kfinal + centers.num > centersize ) {
//here we don't handle the situation where # of centers gets too large.
fprintf(stderr,"oops! no more space for centers\n");
exit(1);
}
copycenters(&points, ¢ers, centerIDs, IDoffset); /* sequential */
IDoffset += numRead;
free(is_center);
free(switch_membership);
free(center_table);
if( stream->feof() ) {
break;
}
}
//finally cluster all temp centers
switch_membership = (bool*)malloc(centers.num*sizeof(bool));
is_center = (bool*)calloc(centers.num,sizeof(bool));
center_table = (int*)malloc(centers.num*sizeof(int));
localSearch( ¢ers, kmin, kmax ,&kfinal ); // parallel
contcenters(¢ers);
outcenterIDs( ¢ers, centerIDs, outfile);
}
int main(int argc, char **argv)
{
char *outfilename = new char[MAXNAMESIZE];
char *infilename = new char[MAXNAMESIZE];
long kmin, kmax, n, chunksize, clustersize;
int dim;
#ifdef PARSEC_VERSION
#define __PARSEC_STRING(x) #x
#define __PARSEC_XSTRING(x) __PARSEC_STRING(x)
fprintf(stderr,"PARSEC Benchmark Suite Version " __PARSEC_XSTRING(PARSEC_VERSION)"\n");
fflush(NULL);
#else
fprintf(stderr,"PARSEC Benchmark Suite\n");
fflush(NULL);
#endif //PARSEC_VERSION
#ifdef ENABLE_PARSEC_HOOKS
__parsec_bench_begin(__parsec_streamcluster);
#endif
if (argc<10) {
fprintf(stderr,"usage: %s k1 k2 d n chunksize clustersize infile outfile nproc\n",
argv[0]);
fprintf(stderr," k1: Min. number of centers allowed\n");
fprintf(stderr," k2: Max. number of centers allowed\n");
fprintf(stderr," d: Dimension of each data point\n");
fprintf(stderr," n: Number of data points\n");
fprintf(stderr," chunksize: Number of data points to handle per step\n");
fprintf(stderr," clustersize: Maximum number of intermediate centers\n");
fprintf(stderr," infile: Input file (if n<=0)\n");
fprintf(stderr," outfile: Output file\n");
fprintf(stderr," nproc: Number of threads to use\n");
fprintf(stderr,"\n");
fprintf(stderr, "if n > 0, points will be randomly generated instead of reading from infile.\n");
exit(1);
}
kmin = atoi(argv[1]);
kmax = atoi(argv[2]);
dim = atoi(argv[3]);
n = atoi(argv[4]);
chunksize = atoi(argv[5]);
clustersize = atoi(argv[6]);
strcpy(infilename, argv[7]);
strcpy(outfilename, argv[8]);
nproc = atoi(argv[9]);
srand48(SEED);
PStream* stream;
if( n > 0 ) {
stream = new SimStream(n);
}
else {
stream = new FileStream(infilename);
}
#ifdef ENABLE_PARSEC_HOOKS
__parsec_roi_begin();
#endif
streamCluster(stream, kmin, kmax, dim, chunksize, clustersize, outfilename );
#ifdef ENABLE_PARSEC_HOOKS
__parsec_roi_end();
#endif
delete stream;
#ifdef ENABLE_PARSEC_HOOKS
__parsec_bench_end();
#endif
return 0;
}