forked from zaixizhang/PocketGen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_recycle.py
220 lines (195 loc) · 10.7 KB
/
train_recycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import shutil
import argparse
from functools import partial
import torch
torch.autograd.set_detect_anomaly(True)
import esm
from torch.nn.utils import clip_grad_norm_
import torch.utils.tensorboard
from torch_geometric.transforms import Compose
import numpy as np
from models.PD import Pocket_Design_new, sample_from_categorical, interpolation_init_new
from utils.datasets import *
from utils.misc import *
from utils.train import *
from utils.data import *
from utils.transforms import *
from torch.utils.data import DataLoader
import wandb
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/train_model.yml')
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--logdir', type=str, default='./logs')
args = parser.parse_args()
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.train.seed)
# Logging
log_dir = get_new_log_dir(args.logdir, prefix=config_name)
ckpt_dir = os.path.join(log_dir, 'checkpoints')
os.makedirs(ckpt_dir, exist_ok=True)
logger = get_logger('train', log_dir)
writer = torch.utils.tensorboard.SummaryWriter(log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
shutil.copytree('./models', os.path.join(log_dir, 'models'))
# Wandb
wandb.init(
# set the wandb project where this run will be logged
project="pocket generation",
# track hyperparameters and run metadata
config=config
)
# Transforms
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
transform = Compose([
protein_featurizer,
ligand_featurizer,
])
# esm
name = 'esm1b_t33_650M_UR50S'
pretrained_model, alphabet = esm.pretrained.load_model_and_alphabet_hub(name)
batch_converter = alphabet.get_batch_converter()
del pretrained_model
# Datasets and loaders
logger.info('Loading dataset...')
dataset, subsets = get_dataset(config=config.dataset, transform=transform, )
train_set, val_set = subsets['train'], subsets['test']
train_iterator = inf_iterator(DataLoader(train_set, batch_size=config.train.batch_size,
shuffle=True, num_workers=config.train.num_workers,
collate_fn=partial(collate_mols_block, batch_converter=batch_converter)))
val_loader = DataLoader(val_set, batch_size=config.train.batch_size, shuffle=False,
num_workers=config.train.num_workers, collate_fn=partial(collate_mols_block, batch_converter=batch_converter))
# Model
logger.info('Building model...')
model = Pocket_Design_new(
config.model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
device=args.device
).to(args.device)
#ckpt = torch.load(config.model.checkpoint, map_location=args.device)
#model.load_state_dict(ckpt['model'])
#model.apply(init_weight)
total = sum([param.nelement() for param in model.parameters()])
print("Number of parameter: %.2fM" % (total/1e6))
# Optimizer and scheduler
optimizer = get_optimizer(config.train.optimizer, model)
scheduler = get_scheduler(config.train.scheduler, optimizer)
loss_list = [0., 0., 0.]
metric_list = [0., 0.]
def train(it, loss_list, metric_list):
model.train()
batch = next(train_iterator)
for key in batch:
if torch.is_tensor(batch[key]):
batch[key] = batch[key].to(args.device)
#loss, loss_list, aar, rmsd = model(batch)
residue_mask = batch['protein_edit_residue']
label_ligand = copy.deepcopy(batch['ligand_pos'])
atom_mask = model.residue_atom_mask[batch['amino_acid'][residue_mask]].bool()
label_X = copy.deepcopy(batch['residue_pos'])
res_S = copy.deepcopy(batch['amino_acid_processed'])
total_steps = torch.randint(1, 4, (1,)).item() # random sample from 1,2,3
res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask = model.init(batch)
for t in range(total_steps, -1, -1):
if t == 0:
model.train()
res_H, res_X, ligand_pos, ligand_feat, pred_res_type = model(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask)
else:
model.eval()
with torch.no_grad():
res_H, res_X, ligand_pos, ligand_feat, pred_res_type = model(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask)
sampled_type, _ = sample_from_categorical(pred_res_type.detach())
huber_loss = model.huber_loss(res_X[residue_mask][atom_mask], label_X[residue_mask][atom_mask]) + model.huber_loss(ligand_pos[ligand_mask.bool()], label_ligand[ligand_mask.bool()])
pred_loss = model.pred_loss(pred_res_type, model.standard2alphabet[batch['amino_acid'][residue_mask] - 1])
struct_loss = 2 * model.proteinloss.structure_loss(res_X[residue_mask], label_X[residue_mask], batch['amino_acid'][residue_mask] - 1, batch['res_idx'][residue_mask], batch['amino_acid_batch'][residue_mask])
loss = huber_loss + pred_loss + struct_loss
loss_list[0] += huber_loss
loss_list[1] += pred_loss
loss_list[2] += struct_loss
aar = (model.standard2alphabet[batch['amino_acid'][residue_mask] - 1] == sampled_type).sum() / len(res_S[residue_mask])
rmsd = torch.sqrt((res_X[residue_mask][:, :4].reshape(-1, 3) - label_X[residue_mask][:, :4].reshape(-1, 3)).norm(dim=1).sum() / len(res_S[residue_mask]) / 4)
metric_list[0] += aar
metric_list[1] += rmsd
loss.backward()
freq = 32
if it % freq == 0:
orig_grad_norm = clip_grad_norm_(model.parameters(), config.train.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
total_loss = (loss_list[0] + loss_list[1] + loss_list[2]).item()/freq
logger.info('[Train] Iter %d | Loss %.6f | Loss(huber) %.6f | Loss(pred) %.6f | Loss(bond & andgle) %.6f | AAR %.6f | RMSD %.6f '
'|Orig_grad_norm %.6f' % (it, total_loss, loss_list[0].item()/freq, loss_list[1].item()/freq, loss_list[2]/freq, metric_list[0].item()/freq, metric_list[1].item()/freq, orig_grad_norm))
wandb.log({"loss": total_loss, "Loss(huber)": loss_list[0].item()/freq, "Loss(pred)": loss_list[1].item()/freq, "aar": metric_list[0].item()/freq, "rmsd": metric_list[1].item()/freq})
writer.add_scalar('train/loss', total_loss, it)
writer.add_scalar('train/huber_loss', loss_list[0].item()/freq, it)
writer.add_scalar('train/pred_loss', loss_list[1].item()/freq, it)
writer.add_scalar('train/bondangle_loss', loss_list[2]/freq, it)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], it)
writer.add_scalar('train/grad', orig_grad_norm, it)
writer.flush()
loss_list = [0., 0., 0.]
metric_list = [0., 0.]
return loss_list, metric_list
def validate(it):
sum_loss, sum_n, aar, rmsd = 0, 0, 0, 0
with torch.no_grad():
model.eval()
for batch in tqdm(val_loader, desc='Validate'):
for key in batch:
if torch.is_tensor(batch[key]):
batch[key] = batch[key].to(args.device)
residue_mask = batch['protein_edit_residue']
label_ligand = copy.deepcopy(batch['ligand_pos'])
atom_mask = model.residue_atom_mask[batch['amino_acid'][residue_mask]].bool()
label_X = copy.deepcopy(batch['residue_pos'])
res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask = model.init(batch)
for _ in range(3):
res_H, res_X, ligand_pos, ligand_feat, pred_res_type = model(res_H, res_X, res_S, res_batch, pred_ligand, ligand_feat, ligand_mask, edit_residue_num, residue_mask)
ligand_mask = batch['ligand_mask'].bool()
sampled_type, _ = sample_from_categorical(pred_res_type.detach())
loss = model.huber_loss(res_X[residue_mask][atom_mask], label_X[residue_mask][atom_mask]) + model.huber_loss(ligand_pos[ligand_mask], label_ligand[ligand_mask])
loss += model.pred_loss(pred_res_type, model.standard2alphabet[batch['amino_acid'][residue_mask] - 1])
loss += 2 * model.proteinloss.structure_loss(res_X[residue_mask], label_X[residue_mask], batch['amino_acid'][residue_mask] - 1, batch['res_idx'][residue_mask], batch['amino_acid_batch'][residue_mask])
sum_loss += loss.item()
sum_n += 1
aar += (model.standard2alphabet[batch['amino_acid'][residue_mask] - 1] == sampled_type).sum() / len(res_S[residue_mask])
rmsd += torch.sqrt((res_X[residue_mask][:, :4].reshape(-1, 3) - label_X[residue_mask][:, :4].reshape(-1, 3)).norm(dim=1).sum() / len(res_S[residue_mask]) / 4)
avg_loss = sum_loss / sum_n
aar = aar / sum_n
rmsd = rmsd / sum_n
if config.train.scheduler.type == 'plateau':
scheduler.step(avg_loss)
elif config.train.scheduler.type == 'warmup_plateau':
scheduler.step_ReduceLROnPlateau(avg_loss)
else:
scheduler.step()
logger.info('[Validate] Iter %05d | Loss %.6f' % (it, avg_loss,))
writer.add_scalar('val/loss', avg_loss, it)
writer.add_scalar('val/aar', aar, it)
writer.add_scalar('val/rmsd', rmsd, it)
writer.flush()
wandb.log(
{"val_loss": avg_loss, "val_aar": aar, "val_rmsd": rmsd})
return avg_loss
try:
for it in range(1, config.train.max_iters + 1):
loss_list, metric_list = train(it, loss_list, metric_list)
if it % config.train.val_freq == 0 or it == config.train.max_iters:
validate(it)
ckpt_path = os.path.join(ckpt_dir, '%d.pt' % it)
torch.save({
'config': config,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'iteration': it,
}, ckpt_path)
except KeyboardInterrupt:
logger.info('Terminating...')
wandb.finish()