forked from TheAlgorithms/C-Sharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
KochSnowflake.cs
157 lines (144 loc) · 6.87 KB
/
KochSnowflake.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Numerics;
namespace Algorithms.Other
{
/// <summary>
/// The Koch snowflake is a fractal curve and one of the earliest fractals to
/// have been described. The Koch snowflake can be built up iteratively, in a
/// sequence of stages. The first stage is an equilateral triangle, and each
/// successive stage is formed by adding outward bends to each side of the
/// previous stage, making smaller equilateral triangles.
/// This can be achieved through the following steps for each line:
/// 1. divide the line segment into three segments of equal length.
/// 2. draw an equilateral triangle that has the middle segment from step 1
/// as its base and points outward.
/// 3. remove the line segment that is the base of the triangle from step 2.
/// (description adapted from https://en.wikipedia.org/wiki/Koch_snowflake )
/// (for a more detailed explanation and an implementation in the
/// Processing language, see https://natureofcode.com/book/chapter-8-fractals/
/// #84-the-koch-curve-and-the-arraylist-technique ).
/// </summary>
public static class KochSnowflake
{
/// <summary>
/// Go through the number of iterations determined by the argument "steps".
/// Be careful with high values (above 5) since the time to calculate increases
/// exponentially.
/// </summary>
/// <param name="initialVectors">
/// The vectors composing the shape to which
/// the algorithm is applied.
/// </param>
/// <param name="steps">The number of iterations.</param>
/// <returns>The transformed vectors after the iteration-steps.</returns>
public static List<Vector2> Iterate(List<Vector2> initialVectors, int steps = 5)
{
List<Vector2> vectors = initialVectors;
for (var i = 0; i < steps; i++)
{
vectors = IterationStep(vectors);
}
return vectors;
}
/// <summary>
/// Method to render the Koch snowflake to a bitmap. To save the
/// bitmap the command 'GetKochSnowflake().Save("KochSnowflake.png")' can be used.
/// </summary>
/// <param name="bitmapWidth">The width of the rendered bitmap.</param>
/// <param name="steps">The number of iterations.</param>
/// <returns>The bitmap of the rendered Koch snowflake.</returns>
public static Bitmap GetKochSnowflake(
int bitmapWidth = 600,
int steps = 5)
{
if (bitmapWidth <= 0)
{
throw new ArgumentOutOfRangeException(
nameof(bitmapWidth),
$"{nameof(bitmapWidth)} should be greater than zero");
}
var offsetX = bitmapWidth / 10f;
var offsetY = bitmapWidth / 3.7f;
var vector1 = new Vector2(offsetX, offsetY);
var vector2 = new Vector2(bitmapWidth / 2, (float)Math.Sin(Math.PI / 3) * bitmapWidth * 0.8f + offsetY);
var vector3 = new Vector2(bitmapWidth - offsetX, offsetY);
List<Vector2> initialVectors = new() { vector1, vector2, vector3, vector1 };
List<Vector2> vectors = Iterate(initialVectors, steps);
return GetBitmap(vectors, bitmapWidth, bitmapWidth);
}
/// <summary>
/// Loops through each pair of adjacent vectors. Each line between two adjacent
/// vectors is divided into 4 segments by adding 3 additional vectors in-between
/// the original two vectors. The vector in the middle is constructed through a
/// 60 degree rotation so it is bent outwards.
/// </summary>
/// <param name="vectors">
/// The vectors composing the shape to which
/// the algorithm is applied.
/// </param>
/// <returns>The transformed vectors after the iteration-step.</returns>
private static List<Vector2> IterationStep(List<Vector2> vectors)
{
List<Vector2> newVectors = new();
for (var i = 0; i < vectors.Count - 1; i++)
{
var startVector = vectors[i];
var endVector = vectors[i + 1];
newVectors.Add(startVector);
var differenceVector = endVector - startVector;
newVectors.Add(startVector + differenceVector / 3);
newVectors.Add(startVector + differenceVector / 3 + Rotate(differenceVector / 3, 60));
newVectors.Add(startVector + differenceVector * 2 / 3);
}
newVectors.Add(vectors[^1]);
return newVectors;
}
/// <summary>
/// Standard rotation of a 2D vector with a rotation matrix
/// (see https://en.wikipedia.org/wiki/Rotation_matrix ).
/// </summary>
/// <param name="vector">The vector to be rotated.</param>
/// <param name="angleInDegrees">The angle by which to rotate the vector.</param>
/// <returns>The rotated vector.</returns>
private static Vector2 Rotate(Vector2 vector, float angleInDegrees)
{
var radians = angleInDegrees * (float)Math.PI / 180;
var ca = (float)Math.Cos(radians);
var sa = (float)Math.Sin(radians);
return new Vector2(ca * vector.X - sa * vector.Y, sa * vector.X + ca * vector.Y);
}
/// <summary>
/// Utility-method to render the Koch snowflake to a bitmap.
/// </summary>
/// <param name="vectors">The vectors defining the edges to be rendered.</param>
/// <param name="bitmapWidth">The width of the rendered bitmap.</param>
/// <param name="bitmapHeight">The height of the rendered bitmap.</param>
/// <returns>The bitmap of the rendered edges.</returns>
private static Bitmap GetBitmap(
List<Vector2> vectors,
int bitmapWidth,
int bitmapHeight)
{
Bitmap bitmap = new(bitmapWidth, bitmapHeight);
using (Graphics graphics = Graphics.FromImage(bitmap))
{
// Set the background white
var imageSize = new Rectangle(0, 0, bitmapWidth, bitmapHeight);
graphics.FillRectangle(Brushes.White, imageSize);
// Draw the edges
for (var i = 0; i < vectors.Count - 1; i++)
{
Pen blackPen = new(Color.Black, 1);
var x1 = vectors[i].X;
var y1 = vectors[i].Y;
var x2 = vectors[i + 1].X;
var y2 = vectors[i + 1].Y;
graphics.DrawLine(blackPen, x1, y1, x2, y2);
}
}
return bitmap;
}
}
}