forked from TheAlgorithms/C-Sharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TimSorter.cs
executable file
·634 lines (548 loc) · 21.9 KB
/
TimSorter.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Timsort is a hybrid stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data.
/// It was originally implemented by Tim Peters in 2002 for use in the Python programming language.
///
/// This class is based on a Java interpretation of Tim Peter's original work.
/// Java class is viewable here:
/// http://cr.openjdk.java.net/~martin/webrevs/openjdk7/timsort/raw_files/new/src/share/classes/java/util/TimSort.java
///
/// Tim Peters's list sort for Python, is described in detail here:
/// http://svn.python.org/projects/python/trunk/Objects/listsort.txt
///
/// Tim's C code may be found here: http://svn.python.org/projects/python/trunk/Objects/listobject.c
///
/// The underlying techniques are described in this paper (and may have even earlier origins):
/// "Optimistic Sorting and Information Theoretic Complexity"
/// Peter McIlroy
/// SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
/// pp 467-474, Austin, Texas, 25-27 January 1993.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class TimSorter<T> : IComparisonSorter<T>
{
private readonly int minMerge;
private readonly int initMinGallop;
private readonly int[] runBase;
private readonly int[] runLengths;
private int minGallop;
private int stackSize;
private IComparer<T> comparer = default!;
/// <summary>
/// Private class for handling gallop merges, allows for tracking array indexes and wins.
/// </summary>
/// <typeparam name="Tc">Type of array element.</typeparam>
private class TimChunk<Tc>
{
public Tc[] Array { get; set; } = default!;
public int Index { get; set; }
public int Remaining { get; set; }
public int Wins { get; set; }
}
public TimSorter(int minMerge = 32, int minGallop = 7)
{
initMinGallop = minGallop;
this.minMerge = minMerge;
runBase = new int[85];
runLengths = new int[85];
stackSize = 0;
this.minGallop = minGallop;
}
/// <summary>
/// Sorts array using specified comparer
/// worst case performance: O(n log(n)),
/// best case performance: O(n),
/// See <a href="https://en.wikipedia.org/wiki/Timsort">here</a> for more info.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
this.comparer = comparer;
var start = 0;
var remaining = array.Length;
if (remaining < minMerge)
{
if (remaining < 2)
{
// Arrays of size 0 or 1 are always sorted.
return;
}
// Don't need to merge, just binary sort
BinarySort(array, start, remaining, start);
return;
}
var minRun = MinRunLength(remaining, minMerge);
do
{
// Identify next run
var runLen = CountRunAndMakeAscending(array, start);
// If the run is too short extend to Min(MIN_RUN, remaining)
if (runLen < minRun)
{
var force = Math.Min(minRun, remaining);
BinarySort(array, start, start + force, start + runLen);
runLen = force;
}
runBase[stackSize] = start;
runLengths[stackSize] = runLen;
stackSize++;
MergeCollapse(array);
start += runLen;
remaining -= runLen;
}
while (remaining != 0);
MergeForceCollapse(array);
}
/// <summary>
/// Returns the minimum acceptable run length for an array of the specified
/// length.Natural runs shorter than this will be extended.
///
/// Computation is:
/// If total less than minRun, return n (it's too small to bother with fancy stuff).
/// Else if total is an exact power of 2, return minRun/2.
/// Else return an int k, where <![CDATA[minRun/2 <= k <= minRun]]>, such that total/k
/// is close to, but strictly less than, an exact power of 2.
/// </summary>
/// <param name="total">Total length remaining to sort.</param>
/// <returns>Minimum run length to be merged.</returns>
private static int MinRunLength(int total, int minRun)
{
var r = 0;
while (total >= minRun)
{
r |= total & 1;
total >>= 1;
}
return total + r;
}
/// <summary>
/// Reverse the specified range of the specified array.
/// </summary>
/// <param name="array">the array in which a range is to be reversed.</param>
/// <param name="start">the index of the first element in the range to be reversed.</param>
/// <param name="end">the index after the last element in the range to be reversed.</param>
private static void ReverseRange(T[] array, int start, int end)
{
end--;
while (start < end)
{
var t = array[start];
array[start++] = array[end];
array[end--] = t;
}
}
/// <summary>
/// Left shift a value, preventing a roll over to negative numbers.
/// </summary>
/// <param name="shiftable">int value to left shift.</param>
/// <returns>Left shifted value, bound to 2,147,483,647.</returns>
private static int BoundLeftShift(int shiftable) => (shiftable << 1) < 0
? (shiftable << 1) + 1
: int.MaxValue;
/// <summary>
/// Check the chunks before getting in to a merge to make sure there's something to actually do.
/// </summary>
/// <param name="left">TimChunk of the left hand side.</param>
/// <param name="right">TimChunk of the right hand side.</param>
/// <param name="dest">The current target point for the remaining values.</param>
/// <returns>If a merge is required.</returns>
private static bool NeedsMerge(TimChunk<T> left, TimChunk<T> right, ref int dest)
{
right.Array[dest++] = right.Array[right.Index++];
if (--right.Remaining == 0)
{
Array.Copy(left.Array, left.Index, right.Array, dest, left.Remaining);
return false;
}
if (left.Remaining == 1)
{
Array.Copy(right.Array, right.Index, right.Array, dest, right.Remaining);
right.Array[dest + right.Remaining] = left.Array[left.Index];
return false;
}
return true;
}
/// <summary>
/// Moves over the last parts of the chunks.
/// </summary>
/// <param name="left">TimChunk of the left hand side.</param>
/// <param name="right">TimChunk of the right hand side.</param>
/// <param name="dest">The current target point for the remaining values.</param>
private static void FinalizeMerge(TimChunk<T> left, TimChunk<T> right, int dest)
{
if (left.Remaining == 1)
{
Array.Copy(right.Array, right.Index, right.Array, dest, right.Remaining);
right.Array[dest + right.Remaining] = left.Array[left.Index];
}
else if (left.Remaining == 0)
{
throw new ArgumentException("Comparison method violates its general contract!");
}
else
{
Array.Copy(left.Array, left.Index, right.Array, dest, left.Remaining);
}
}
/// <summary>
/// Returns the length of the run beginning at the specified position in
/// the specified array and reverses the run if it is descending (ensuring
/// that the run will always be ascending when the method returns).
///
/// A run is the longest ascending sequence with:
///
/// <![CDATA[a[lo] <= a[lo + 1] <= a[lo + 2] <= ...]]>
///
/// or the longest descending sequence with:
///
/// <![CDATA[a[lo] > a[lo + 1] > a[lo + 2] > ...]]>
///
/// For its intended use in a stable mergesort, the strictness of the
/// definition of "descending" is needed so that the call can safely
/// reverse a descending sequence without violating stability.
/// </summary>
/// <param name="array">the array in which a run is to be counted and possibly reversed.</param>
/// <param name="start">index of the first element in the run.</param>
/// <returns>the length of the run beginning at the specified position in the specified array.</returns>
private int CountRunAndMakeAscending(T[] array, int start)
{
var runHi = start + 1;
if (runHi == array.Length)
{
return 1;
}
// Find end of run, and reverse range if descending
if (comparer.Compare(array[runHi++], array[start]) < 0)
{ // Descending
while (runHi < array.Length && comparer.Compare(array[runHi], array[runHi - 1]) < 0)
{
runHi++;
}
ReverseRange(array, start, runHi);
}
else
{ // Ascending
while (runHi < array.Length && comparer.Compare(array[runHi], array[runHi - 1]) >= 0)
{
runHi++;
}
}
return runHi - start;
}
/// <summary>
/// Find the position in the array that a key should fit to the left of where it currently sits.
/// </summary>
/// <param name="array">Array to search.</param>
/// <param name="key">Key to place in the array.</param>
/// <param name="i">Base index for the key.</param>
/// <param name="len">Length of the chunk to run through.</param>
/// <param name="hint">Initial starting position to start from.</param>
/// <returns>Offset for the key's location.</returns>
private int GallopLeft(T[] array, T key, int i, int len, int hint)
{
var (offset, lastOfs) = comparer.Compare(key, array[i + hint]) > 0
? RightRun(array, key, i, len, hint, 0)
: LeftRun(array, key, i, hint, 1);
return FinalOffset(array, key, i, offset, lastOfs, 1);
}
/// <summary>
/// Find the position in the array that a key should fit to the right of where it currently sits.
/// </summary>
/// <param name="array">Array to search.</param>
/// <param name="key">Key to place in the array.</param>
/// <param name="i">Base index for the key.</param>
/// <param name="len">Length of the chunk to run through.</param>
/// <param name="hint">Initial starting position to start from.</param>
/// <returns>Offset for the key's location.</returns>
private int GallopRight(T[] array, T key, int i, int len, int hint)
{
var (offset, lastOfs) = comparer.Compare(key, array[i + hint]) < 0
? LeftRun(array, key, i, hint, 0)
: RightRun(array, key, i, len, hint, -1);
return FinalOffset(array, key, i, offset, lastOfs, 0);
}
private (int offset, int lastOfs) LeftRun(T[] array, T key, int i, int hint, int lt)
{
var maxOfs = hint + 1;
var (offset, tmp) = (1, 0);
while (offset < maxOfs && comparer.Compare(key, array[i + hint - offset]) < lt)
{
tmp = offset;
offset = BoundLeftShift(offset);
}
if (offset > maxOfs)
{
offset = maxOfs;
}
var lastOfs = hint - offset;
offset = hint - tmp;
return (offset, lastOfs);
}
private (int offset, int lastOfs) RightRun(T[] array, T key, int i, int len, int hint, int gt)
{
var (offset, lastOfs) = (1, 0);
var maxOfs = len - hint;
while (offset < maxOfs && comparer.Compare(key, array[i + hint + offset]) > gt)
{
lastOfs = offset;
offset = BoundLeftShift(offset);
}
if (offset > maxOfs)
{
offset = maxOfs;
}
offset += hint;
lastOfs += hint;
return (offset, lastOfs);
}
private int FinalOffset(T[] array, T key, int i, int offset, int lastOfs, int lt)
{
lastOfs++;
while (lastOfs < offset)
{
var m = lastOfs + (int)((uint)(offset - lastOfs) >> 1);
if (comparer.Compare(key, array[i + m]) < lt)
{
offset = m;
}
else
{
lastOfs = m + 1;
}
}
return offset;
}
/// <summary>
/// Sorts the specified portion of the specified array using a binary
/// insertion sort. It requires O(n log n) compares, but O(n^2) data movement.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="start">The index of the first element in the range to be sorted.</param>
/// <param name="end">The index after the last element in the range to be sorted.</param>
/// <param name="first">The index of the first element in the range that is not already known to be sorted, must be between start and end.</param>
private void BinarySort(T[] array, int start, int end, int first)
{
if (first >= end || first <= start)
{
first = start + 1;
}
for (; first < end; first++)
{
var target = array[first];
var targetInsertLocation = BinarySearch(array, start, first - 1, target);
Array.Copy(array, targetInsertLocation, array, targetInsertLocation + 1, first - targetInsertLocation);
array[targetInsertLocation] = target;
}
}
private int BinarySearch(T[] array, int left, int right, T target)
{
while (left < right)
{
var mid = (left + right) >> 1;
if (comparer.Compare(target, array[mid]) < 0)
{
right = mid;
}
else
{
left = mid + 1;
}
}
return comparer.Compare(target, array[left]) < 0
? left
: left + 1;
}
private void MergeCollapse(T[] array)
{
while (stackSize > 1)
{
var n = stackSize - 2;
if (n > 0 && runLengths[n - 1] <= runLengths[n] + runLengths[n + 1])
{
if (runLengths[n - 1] < runLengths[n + 1])
{
n--;
}
MergeAt(array, n);
}
else if (runLengths[n] <= runLengths[n + 1])
{
MergeAt(array, n);
}
else
{
break;
}
}
}
private void MergeForceCollapse(T[] array)
{
while (stackSize > 1)
{
var n = stackSize - 2;
if (n > 0 && runLengths[n - 1] < runLengths[n + 1])
{
n--;
}
MergeAt(array, n);
}
}
private void MergeAt(T[] array, int index)
{
var baseA = runBase[index];
var lenA = runLengths[index];
var baseB = runBase[index + 1];
var lenB = runLengths[index + 1];
runLengths[index] = lenA + lenB;
if (index == stackSize - 3)
{
runBase[index + 1] = runBase[index + 2];
runLengths[index + 1] = runLengths[index + 2];
}
stackSize--;
var k = GallopRight(array, array[baseB], baseA, lenA, 0);
baseA += k;
lenA -= k;
if (lenA <= 0)
{
return;
}
lenB = GallopLeft(array, array[baseA + lenA - 1], baseB, lenB, lenB - 1);
if (lenB <= 0)
{
return;
}
Merge(array, baseA, lenA, baseB, lenB);
}
private void Merge(T[] array, int baseA, int lenA, int baseB, int lenB)
{
var endA = baseA + lenA;
var dest = baseA;
TimChunk<T> left = new()
{
Array = array[baseA..endA],
Remaining = lenA,
};
TimChunk<T> right = new()
{
Array = array,
Index = baseB,
Remaining = lenB,
};
// Move first element of the right chunk and deal with degenerate cases.
if (!TimSorter<T>.NeedsMerge(left, right, ref dest))
{
// One of the chunks had 0-1 items in it, so no need to merge anything.
return;
}
var gallop = minGallop;
while (RunMerge(left, right, ref dest, ref gallop))
{
// Penalize for leaving gallop mode
gallop = gallop > 0
? gallop + 2
: 2;
}
minGallop = gallop >= 1
? gallop
: 1;
FinalizeMerge(left, right, dest);
}
private bool RunMerge(TimChunk<T> left, TimChunk<T> right, ref int dest, ref int gallop)
{
// Reset the number of times in row a run wins.
left.Wins = 0;
right.Wins = 0;
// Run a stable merge sort until (if ever) one run starts winning consistently.
if (StableMerge(left, right, ref dest, gallop))
{
// Stable merge sort completed with no viable gallops, time to exit.
return false;
}
// One run is winning so consistently that galloping may be a huge win.
// So try that, and continue galloping until (if ever) neither run appears to be winning consistently anymore.
do
{
if (GallopMerge(left, right, ref dest))
{
// Galloped all the way to the end, merge is complete.
return false;
}
// We had a bit of a run, so make it easier to get started again.
gallop--;
}
while (left.Wins >= initMinGallop || right.Wins >= initMinGallop);
return true;
}
private bool StableMerge(TimChunk<T> left, TimChunk<T> right, ref int dest, int gallop)
{
do
{
if (comparer.Compare(right.Array[right.Index], left.Array[left.Index]) < 0)
{
right.Array[dest++] = right.Array[right.Index++];
right.Wins++;
left.Wins = 0;
if (--right.Remaining == 0)
{
return true;
}
}
else
{
right.Array[dest++] = left.Array[left.Index++];
left.Wins++;
right.Wins = 0;
if (--left.Remaining == 1)
{
return true;
}
}
}
while ((left.Wins | right.Wins) < gallop);
return false;
}
private bool GallopMerge(TimChunk<T> left, TimChunk<T> right, ref int dest)
{
left.Wins = GallopRight(left.Array, right.Array[right.Index], left.Index, left.Remaining, 0);
if (left.Wins != 0)
{
Array.Copy(left.Array, left.Index, right.Array, dest, left.Wins);
dest += left.Wins;
left.Index += left.Wins;
left.Remaining -= left.Wins;
if (left.Remaining <= 1)
{
return true;
}
}
right.Array[dest++] = right.Array[right.Index++];
if (--right.Remaining == 0)
{
return true;
}
right.Wins = GallopLeft(right.Array, left.Array[left.Index], right.Index, right.Remaining, 0);
if (right.Wins != 0)
{
Array.Copy(right.Array, right.Index, right.Array, dest, right.Wins);
dest += right.Wins;
right.Index += right.Wins;
right.Remaining -= right.Wins;
if (right.Remaining == 0)
{
return true;
}
}
right.Array[dest++] = left.Array[left.Index++];
if (--left.Remaining == 1)
{
return true;
}
return false;
}
}
}