This repository was archived by the owner on May 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleFeedForwardLoad.py
57 lines (40 loc) · 2.19 KB
/
SimpleFeedForwardLoad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True)
learning_rate = 0.5
training_epochs = 1000
batch_size = 64
number_of_input = 784
number_of_output = 10
layer_1_size = 128
layer_2_size = 64
is_train = False
with tf.variable_scope("input"):
X = tf.placeholder(tf.float32, shape=[None, number_of_input])
with tf.variable_scope("layer1"):
weights = tf.get_variable(name="weights1", shape=[number_of_input, layer_1_size],
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable(name="biases1", shape=[layer_1_size], initializer=tf.zeros_initializer())
layer_1_output = tf.nn.relu(tf.matmul(X, weights) + biases)
with tf.variable_scope("layer2"):
weights = tf.get_variable(name="weights2", shape=[layer_1_size, layer_2_size],
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable(name="biases2", shape=[layer_2_size], initializer=tf.zeros_initializer())
layer_2_output = tf.nn.relu(tf.matmul(layer_1_output, weights) + biases)
with tf.variable_scope("output"):
weights = tf.get_variable(name="weightsOut", shape=[layer_2_size, number_of_output],
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable(name="biasesOut", shape=[number_of_output], initializer=tf.zeros_initializer())
output = tf.nn.softmax(tf.matmul(layer_2_output, weights) + biases)
with tf.variable_scope("cost"):
Y = tf.placeholder(tf.float32, shape=[None, number_of_output])
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(output), reduction_indices=[1]))
with tf.variable_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
with tf.Session() as session:
session.run(tf.global_variables_initializer())
saver.restore(session, "../saveFeedForward/trained_model.ckpt")
final_accuracy = session.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels})
print("Fianl Accuracy: ", final_accuracy)