-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatt_tools.py
65 lines (59 loc) · 2.07 KB
/
att_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import random
import matplotlib.pyplot as plt
import colorsys
import cv2
from skimage.measure import find_contours
import numpy as np
from matplotlib.patches import Polygon
def apply_mask(image, mask, color, alpha=0.5):
for c in range(3):
image[:, :, c] = image[:, :, c] * (1 - alpha * mask) + alpha * mask * color[c] * 255
return image
def random_colors(N, bright=True):
"""
Generate random colors.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
def display_instances(image, mask, fname="test", figsize=(5, 5), blur=False, contour=True, alpha=0.5):
fig = plt.figure(figsize=figsize, frameon=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
ax = plt.gca()
N = 1
mask = mask[None, :, :]
# Generate random colors
colors = random_colors(N)
# Show area outside image boundaries.
height, width = image.shape[:2]
margin = 0
ax.set_ylim(height + margin, -margin)
ax.set_xlim(-margin, width + margin)
ax.axis('off')
masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]
_mask = mask[i]
if blur:
_mask = cv2.blur(_mask,(10,10))
# Mask
masked_image = apply_mask(masked_image, _mask, color, alpha)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
if contour:
padded_mask = np.zeros((_mask.shape[0] + 2, _mask.shape[1] + 2))
padded_mask[1:-1, 1:-1] = _mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8), aspect='auto')
fig.savefig(fname)
print(f"{fname} saved.")
return