-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathextended_euclidean.hpp
57 lines (44 loc) · 1.38 KB
/
extended_euclidean.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*
Extended Euclidean algorithm
----------------------------
Given two non-negative numbers A and B as inputs, find M[0], M[1] such that:
greatest_common_divisor(A, B) = M[0]*B + M[1]*B
Time complexity
---------------
O(log(k)), where k = min(a, b) is the smaller of the input integers a and b
Space complexity
----------------
O(1).
*/
#ifndef EXTENDED_EUCLIDEAN_HPP
#define EXTENDED_EUCLIDEAN_HPP
#include <array>
using std::array;
/*
extended_euclidean
------------------
Uses the recurrence relation:
greatest_common_divisor(a, b) = greatest_common_divisor(b, a % b)
to find coefficients M[0] and M[1] such that:
greatest_common_divisor(a, b) = (M[0] * a) + (M[1] * b)
Loop invariant: greatest_common_divisor(a, b) is the same at the end of each
iteration a = aM[0] * (original value of a) + aM[1] * (original value of b)
The above statement holds for b and bM as well.
Return value
------------
array<int, 2> M of length 2 which satisfies the equation above
*/
array<int, 2> extended_euclidean(int a, int b) {
array<int, 2> aM = {{1, 0}};
array<int, 2> bM = {{0, 1}};
while (b != 0) {
aM[0] -= (a/b) * bM[0];
aM[1] -= (a/b) * bM[1];
aM.swap(bM);
int newA = b;
b = a % b;
a = newA;
}
return aM;
}
# endif // EXTENDED_EUCLIDEAN_HPP