-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinceptionv3_keras.py
563 lines (558 loc) · 44.5 KB
/
inceptionv3_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import torch
import torch.nn as nn
import torch.nn.functional as F
class InceptionV3Keras(nn.Module):
def __init__(self):
super(InceptionV3Keras, self).__init__()
self.conv2d_1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3, 3), stride=(2, 2), groups=1, bias=False)
self.batch_normalization_1 = nn.BatchNorm2d(num_features=32, eps=0.0010000000475, momentum=0.0)
self.conv2d_2 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_2 = nn.BatchNorm2d(num_features=32, eps=0.0010000000475, momentum=0.0)
self.conv2d_3 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_3 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.conv2d_4 = nn.Conv2d(in_channels=64, out_channels=80, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_4 = nn.BatchNorm2d(num_features=80, eps=0.0010000000475, momentum=0.0)
self.conv2d_5 = nn.Conv2d(in_channels=80, out_channels=192, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_5 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_9 = nn.Conv2d(in_channels=192, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_7 = nn.Conv2d(in_channels=192, out_channels=48, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_6 = nn.Conv2d(in_channels=192, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_9 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_7 = nn.BatchNorm2d(num_features=48, eps=0.0010000000475, momentum=0.0)
self.conv2d_12 = nn.Conv2d(in_channels=192, out_channels=32, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_6 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_12 = nn.BatchNorm2d(num_features=32, eps=0.0010000000475, momentum=0.0)
self.conv2d_10 = nn.Conv2d(in_channels=64, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_8 = nn.Conv2d(in_channels=48, out_channels=64, kernel_size=(5, 5), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_10 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_8 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.conv2d_11 = nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_11 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.conv2d_16 = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_14 = nn.Conv2d(in_channels=256, out_channels=48, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_13 = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_16 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_14 = nn.BatchNorm2d(num_features=48, eps=0.0010000000475, momentum=0.0)
self.conv2d_19 = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_13 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_19 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.conv2d_17 = nn.Conv2d(in_channels=64, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_15 = nn.Conv2d(in_channels=48, out_channels=64, kernel_size=(5, 5), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_17 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_15 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.conv2d_18 = nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_18 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.conv2d_23 = nn.Conv2d(in_channels=288, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_21 = nn.Conv2d(in_channels=288, out_channels=48, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_20 = nn.Conv2d(in_channels=288, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_23 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_21 = nn.BatchNorm2d(num_features=48, eps=0.0010000000475, momentum=0.0)
self.conv2d_26 = nn.Conv2d(in_channels=288, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_20 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_26 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.conv2d_24 = nn.Conv2d(in_channels=64, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_22 = nn.Conv2d(in_channels=48, out_channels=64, kernel_size=(5, 5), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_24 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_22 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.conv2d_25 = nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_25 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.conv2d_28 = nn.Conv2d(in_channels=288, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_27 = nn.Conv2d(in_channels=288, out_channels=384, kernel_size=(3, 3), stride=(2, 2), groups=1, bias=False)
self.batch_normalization_28 = nn.BatchNorm2d(num_features=64, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_27 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.conv2d_29 = nn.Conv2d(in_channels=64, out_channels=96, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_29 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.conv2d_30 = nn.Conv2d(in_channels=96, out_channels=96, kernel_size=(3, 3), stride=(2, 2), groups=1, bias=False)
self.batch_normalization_30 = nn.BatchNorm2d(num_features=96, eps=0.0010000000475, momentum=0.0)
self.conv2d_35 = nn.Conv2d(in_channels=768, out_channels=128, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_32 = nn.Conv2d(in_channels=768, out_channels=128, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_31 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_35 = nn.BatchNorm2d(num_features=128, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_32 = nn.BatchNorm2d(num_features=128, eps=0.0010000000475, momentum=0.0)
self.conv2d_40 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_31 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_40 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_36 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_33 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_36 = nn.BatchNorm2d(num_features=128, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_33 = nn.BatchNorm2d(num_features=128, eps=0.0010000000475, momentum=0.0)
self.conv2d_37 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.conv2d_34 = nn.Conv2d(in_channels=128, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_37 = nn.BatchNorm2d(num_features=128, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_34 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_38 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_38 = nn.BatchNorm2d(num_features=128, eps=0.0010000000475, momentum=0.0)
self.conv2d_39 = nn.Conv2d(in_channels=128, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_39 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_45 = nn.Conv2d(in_channels=768, out_channels=160, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_42 = nn.Conv2d(in_channels=768, out_channels=160, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_41 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_45 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_42 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.conv2d_50 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_41 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_50 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_46 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_43 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_46 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_43 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.conv2d_47 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.conv2d_44 = nn.Conv2d(in_channels=160, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_47 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_44 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_48 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_48 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.conv2d_49 = nn.Conv2d(in_channels=160, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_49 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_55 = nn.Conv2d(in_channels=768, out_channels=160, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_52 = nn.Conv2d(in_channels=768, out_channels=160, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_51 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_55 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_52 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.conv2d_60 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_51 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_60 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_56 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_53 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_56 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_53 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.conv2d_57 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.conv2d_54 = nn.Conv2d(in_channels=160, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_57 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_54 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_58 = nn.Conv2d(in_channels=160, out_channels=160, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_58 = nn.BatchNorm2d(num_features=160, eps=0.0010000000475, momentum=0.0)
self.conv2d_59 = nn.Conv2d(in_channels=160, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_59 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_65 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_62 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_61 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_65 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_62 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_70 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_61 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_70 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_66 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_63 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_66 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_63 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_67 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.conv2d_64 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_67 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_64 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_68 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_68 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_69 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_69 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_73 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_71 = nn.Conv2d(in_channels=768, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_73 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_71 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_74 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(1, 7), stride=(1, 1), groups=1, bias=False)
self.conv2d_72 = nn.Conv2d(in_channels=192, out_channels=320, kernel_size=(3, 3), stride=(2, 2), groups=1, bias=False)
self.batch_normalization_74 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_72 = nn.BatchNorm2d(num_features=320, eps=0.0010000000475, momentum=0.0)
self.conv2d_75 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(7, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_75 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_76 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 3), stride=(2, 2), groups=1, bias=False)
self.batch_normalization_76 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_81 = nn.Conv2d(in_channels=1280, out_channels=448, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_78 = nn.Conv2d(in_channels=1280, out_channels=384, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_77 = nn.Conv2d(in_channels=1280, out_channels=320, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_81 = nn.BatchNorm2d(num_features=448, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_78 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.conv2d_85 = nn.Conv2d(in_channels=1280, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_77 = nn.BatchNorm2d(num_features=320, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_85 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_82 = nn.Conv2d(in_channels=448, out_channels=384, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_79 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(1, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_80 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(3, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_82 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_79 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_80 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.conv2d_83 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(1, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_84 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(3, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_83 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_84 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.conv2d_90 = nn.Conv2d(in_channels=2048, out_channels=448, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_87 = nn.Conv2d(in_channels=2048, out_channels=384, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.conv2d_86 = nn.Conv2d(in_channels=2048, out_channels=320, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_90 = nn.BatchNorm2d(num_features=448, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_87 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.conv2d_94 = nn.Conv2d(in_channels=2048, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_86 = nn.BatchNorm2d(num_features=320, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_94 = nn.BatchNorm2d(num_features=192, eps=0.0010000000475, momentum=0.0)
self.conv2d_91 = nn.Conv2d(in_channels=448, out_channels=384, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_88 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(1, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_89 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(3, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_91 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_88 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_89 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.conv2d_92 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(1, 3), stride=(1, 1), groups=1, bias=False)
self.conv2d_93 = nn.Conv2d(in_channels=384, out_channels=384, kernel_size=(3, 1), stride=(1, 1), groups=1, bias=False)
self.batch_normalization_92 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.batch_normalization_93 = nn.BatchNorm2d(num_features=384, eps=0.0010000000475, momentum=0.0)
self.predictions = nn.Linear(in_features = 2048, out_features = 1000, bias = True)
def forward(self, x):
conv2d_1 = self.conv2d_1(x)
batch_normalization_1 = self.batch_normalization_1(conv2d_1)
activation_1 = F.relu(batch_normalization_1)
conv2d_2 = self.conv2d_2(activation_1)
batch_normalization_2 = self.batch_normalization_2(conv2d_2)
activation_2 = F.relu(batch_normalization_2)
conv2d_3_pad = F.pad(activation_2, (1, 1, 1, 1))
conv2d_3 = self.conv2d_3(conv2d_3_pad)
batch_normalization_3 = self.batch_normalization_3(conv2d_3)
activation_3 = F.relu(batch_normalization_3)
max_pooling2d_1 = F.max_pool2d(activation_3, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
conv2d_4 = self.conv2d_4(max_pooling2d_1)
batch_normalization_4 = self.batch_normalization_4(conv2d_4)
activation_4 = F.relu(batch_normalization_4)
conv2d_5 = self.conv2d_5(activation_4)
batch_normalization_5 = self.batch_normalization_5(conv2d_5)
activation_5 = F.relu(batch_normalization_5)
max_pooling2d_2 = F.max_pool2d(activation_5, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
conv2d_9 = self.conv2d_9(max_pooling2d_2)
conv2d_7 = self.conv2d_7(max_pooling2d_2)
average_pooling2d_1 = F.avg_pool2d(max_pooling2d_2, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_6 = self.conv2d_6(max_pooling2d_2)
batch_normalization_9 = self.batch_normalization_9(conv2d_9)
batch_normalization_7 = self.batch_normalization_7(conv2d_7)
conv2d_12 = self.conv2d_12(average_pooling2d_1)
batch_normalization_6 = self.batch_normalization_6(conv2d_6)
activation_9 = F.relu(batch_normalization_9)
activation_7 = F.relu(batch_normalization_7)
batch_normalization_12 = self.batch_normalization_12(conv2d_12)
activation_6 = F.relu(batch_normalization_6)
conv2d_10_pad = F.pad(activation_9, (1, 1, 1, 1))
conv2d_10 = self.conv2d_10(conv2d_10_pad)
conv2d_8_pad = F.pad(activation_7, (2, 2, 2, 2))
conv2d_8 = self.conv2d_8(conv2d_8_pad)
activation_12 = F.relu(batch_normalization_12)
batch_normalization_10 = self.batch_normalization_10(conv2d_10)
batch_normalization_8 = self.batch_normalization_8(conv2d_8)
activation_10 = F.relu(batch_normalization_10)
activation_8 = F.relu(batch_normalization_8)
conv2d_11_pad = F.pad(activation_10, (1, 1, 1, 1))
conv2d_11 = self.conv2d_11(conv2d_11_pad)
batch_normalization_11 = self.batch_normalization_11(conv2d_11)
activation_11 = F.relu(batch_normalization_11)
mixed0 = torch.cat((activation_6, activation_8, activation_11, activation_12), 1)
conv2d_16 = self.conv2d_16(mixed0)
conv2d_14 = self.conv2d_14(mixed0)
average_pooling2d_2 = F.avg_pool2d(mixed0, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_13 = self.conv2d_13(mixed0)
batch_normalization_16 = self.batch_normalization_16(conv2d_16)
batch_normalization_14 = self.batch_normalization_14(conv2d_14)
conv2d_19 = self.conv2d_19(average_pooling2d_2)
batch_normalization_13 = self.batch_normalization_13(conv2d_13)
activation_16 = F.relu(batch_normalization_16)
activation_14 = F.relu(batch_normalization_14)
batch_normalization_19 = self.batch_normalization_19(conv2d_19)
activation_13 = F.relu(batch_normalization_13)
conv2d_17_pad = F.pad(activation_16, (1, 1, 1, 1))
conv2d_17 = self.conv2d_17(conv2d_17_pad)
conv2d_15_pad = F.pad(activation_14, (2, 2, 2, 2))
conv2d_15 = self.conv2d_15(conv2d_15_pad)
activation_19 = F.relu(batch_normalization_19)
batch_normalization_17 = self.batch_normalization_17(conv2d_17)
batch_normalization_15 = self.batch_normalization_15(conv2d_15)
activation_17 = F.relu(batch_normalization_17)
activation_15 = F.relu(batch_normalization_15)
conv2d_18_pad = F.pad(activation_17, (1, 1, 1, 1))
conv2d_18 = self.conv2d_18(conv2d_18_pad)
batch_normalization_18 = self.batch_normalization_18(conv2d_18)
activation_18 = F.relu(batch_normalization_18)
mixed1 = torch.cat((activation_13, activation_15, activation_18, activation_19), 1)
conv2d_23 = self.conv2d_23(mixed1)
conv2d_21 = self.conv2d_21(mixed1)
average_pooling2d_3 = F.avg_pool2d(mixed1, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_20 = self.conv2d_20(mixed1)
batch_normalization_23 = self.batch_normalization_23(conv2d_23)
batch_normalization_21 = self.batch_normalization_21(conv2d_21)
conv2d_26 = self.conv2d_26(average_pooling2d_3)
batch_normalization_20 = self.batch_normalization_20(conv2d_20)
activation_23 = F.relu(batch_normalization_23)
activation_21 = F.relu(batch_normalization_21)
batch_normalization_26 = self.batch_normalization_26(conv2d_26)
activation_20 = F.relu(batch_normalization_20)
conv2d_24_pad = F.pad(activation_23, (1, 1, 1, 1))
conv2d_24 = self.conv2d_24(conv2d_24_pad)
conv2d_22_pad = F.pad(activation_21, (2, 2, 2, 2))
conv2d_22 = self.conv2d_22(conv2d_22_pad)
activation_26 = F.relu(batch_normalization_26)
batch_normalization_24 = self.batch_normalization_24(conv2d_24)
batch_normalization_22 = self.batch_normalization_22(conv2d_22)
activation_24 = F.relu(batch_normalization_24)
activation_22 = F.relu(batch_normalization_22)
conv2d_25_pad = F.pad(activation_24, (1, 1, 1, 1))
conv2d_25 = self.conv2d_25(conv2d_25_pad)
batch_normalization_25 = self.batch_normalization_25(conv2d_25)
activation_25 = F.relu(batch_normalization_25)
mixed2 = torch.cat((activation_20, activation_22, activation_25, activation_26), 1)
conv2d_28 = self.conv2d_28(mixed2)
conv2d_27 = self.conv2d_27(mixed2)
max_pooling2d_3 = F.max_pool2d(mixed2, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
batch_normalization_28 = self.batch_normalization_28(conv2d_28)
batch_normalization_27 = self.batch_normalization_27(conv2d_27)
activation_28 = F.relu(batch_normalization_28)
activation_27 = F.relu(batch_normalization_27)
conv2d_29_pad = F.pad(activation_28, (1, 1, 1, 1))
conv2d_29 = self.conv2d_29(conv2d_29_pad)
batch_normalization_29 = self.batch_normalization_29(conv2d_29)
activation_29 = F.relu(batch_normalization_29)
conv2d_30 = self.conv2d_30(activation_29)
batch_normalization_30 = self.batch_normalization_30(conv2d_30)
activation_30 = F.relu(batch_normalization_30)
mixed3 = torch.cat((activation_27, activation_30, max_pooling2d_3), 1)
conv2d_35 = self.conv2d_35(mixed3)
conv2d_32 = self.conv2d_32(mixed3)
average_pooling2d_4 = F.avg_pool2d(mixed3, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_31 = self.conv2d_31(mixed3)
batch_normalization_35 = self.batch_normalization_35(conv2d_35)
batch_normalization_32 = self.batch_normalization_32(conv2d_32)
conv2d_40 = self.conv2d_40(average_pooling2d_4)
batch_normalization_31 = self.batch_normalization_31(conv2d_31)
activation_35 = F.relu(batch_normalization_35)
activation_32 = F.relu(batch_normalization_32)
batch_normalization_40 = self.batch_normalization_40(conv2d_40)
activation_31 = F.relu(batch_normalization_31)
conv2d_36_pad = F.pad(activation_35, (0, 0, 3, 3))
conv2d_36 = self.conv2d_36(conv2d_36_pad)
conv2d_33_pad = F.pad(activation_32, (3, 3, 0, 0))
conv2d_33 = self.conv2d_33(conv2d_33_pad)
activation_40 = F.relu(batch_normalization_40)
batch_normalization_36 = self.batch_normalization_36(conv2d_36)
batch_normalization_33 = self.batch_normalization_33(conv2d_33)
activation_36 = F.relu(batch_normalization_36)
activation_33 = F.relu(batch_normalization_33)
conv2d_37_pad = F.pad(activation_36, (3, 3, 0, 0))
conv2d_37 = self.conv2d_37(conv2d_37_pad)
conv2d_34_pad = F.pad(activation_33, (0, 0, 3, 3))
conv2d_34 = self.conv2d_34(conv2d_34_pad)
batch_normalization_37 = self.batch_normalization_37(conv2d_37)
batch_normalization_34 = self.batch_normalization_34(conv2d_34)
activation_37 = F.relu(batch_normalization_37)
activation_34 = F.relu(batch_normalization_34)
conv2d_38_pad = F.pad(activation_37, (0, 0, 3, 3))
conv2d_38 = self.conv2d_38(conv2d_38_pad)
batch_normalization_38 = self.batch_normalization_38(conv2d_38)
activation_38 = F.relu(batch_normalization_38)
conv2d_39_pad = F.pad(activation_38, (3, 3, 0, 0))
conv2d_39 = self.conv2d_39(conv2d_39_pad)
batch_normalization_39 = self.batch_normalization_39(conv2d_39)
activation_39 = F.relu(batch_normalization_39)
mixed4 = torch.cat((activation_31, activation_34, activation_39, activation_40), 1)
conv2d_45 = self.conv2d_45(mixed4)
conv2d_42 = self.conv2d_42(mixed4)
average_pooling2d_5 = F.avg_pool2d(mixed4, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_41 = self.conv2d_41(mixed4)
batch_normalization_45 = self.batch_normalization_45(conv2d_45)
batch_normalization_42 = self.batch_normalization_42(conv2d_42)
conv2d_50 = self.conv2d_50(average_pooling2d_5)
batch_normalization_41 = self.batch_normalization_41(conv2d_41)
activation_45 = F.relu(batch_normalization_45)
activation_42 = F.relu(batch_normalization_42)
batch_normalization_50 = self.batch_normalization_50(conv2d_50)
activation_41 = F.relu(batch_normalization_41)
conv2d_46_pad = F.pad(activation_45, (0, 0, 3, 3))
conv2d_46 = self.conv2d_46(conv2d_46_pad)
conv2d_43_pad = F.pad(activation_42, (3, 3, 0, 0))
conv2d_43 = self.conv2d_43(conv2d_43_pad)
activation_50 = F.relu(batch_normalization_50)
batch_normalization_46 = self.batch_normalization_46(conv2d_46)
batch_normalization_43 = self.batch_normalization_43(conv2d_43)
activation_46 = F.relu(batch_normalization_46)
activation_43 = F.relu(batch_normalization_43)
conv2d_47_pad = F.pad(activation_46, (3, 3, 0, 0))
conv2d_47 = self.conv2d_47(conv2d_47_pad)
conv2d_44_pad = F.pad(activation_43, (0, 0, 3, 3))
conv2d_44 = self.conv2d_44(conv2d_44_pad)
batch_normalization_47 = self.batch_normalization_47(conv2d_47)
batch_normalization_44 = self.batch_normalization_44(conv2d_44)
activation_47 = F.relu(batch_normalization_47)
activation_44 = F.relu(batch_normalization_44)
conv2d_48_pad = F.pad(activation_47, (0, 0, 3, 3))
conv2d_48 = self.conv2d_48(conv2d_48_pad)
batch_normalization_48 = self.batch_normalization_48(conv2d_48)
activation_48 = F.relu(batch_normalization_48)
conv2d_49_pad = F.pad(activation_48, (3, 3, 0, 0))
conv2d_49 = self.conv2d_49(conv2d_49_pad)
batch_normalization_49 = self.batch_normalization_49(conv2d_49)
activation_49 = F.relu(batch_normalization_49)
mixed5 = torch.cat((activation_41, activation_44, activation_49, activation_50), 1)
conv2d_55 = self.conv2d_55(mixed5)
conv2d_52 = self.conv2d_52(mixed5)
average_pooling2d_6 = F.avg_pool2d(mixed5, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_51 = self.conv2d_51(mixed5)
batch_normalization_55 = self.batch_normalization_55(conv2d_55)
batch_normalization_52 = self.batch_normalization_52(conv2d_52)
conv2d_60 = self.conv2d_60(average_pooling2d_6)
batch_normalization_51 = self.batch_normalization_51(conv2d_51)
activation_55 = F.relu(batch_normalization_55)
activation_52 = F.relu(batch_normalization_52)
batch_normalization_60 = self.batch_normalization_60(conv2d_60)
activation_51 = F.relu(batch_normalization_51)
conv2d_56_pad = F.pad(activation_55, (0, 0, 3, 3))
conv2d_56 = self.conv2d_56(conv2d_56_pad)
conv2d_53_pad = F.pad(activation_52, (3, 3, 0, 0))
conv2d_53 = self.conv2d_53(conv2d_53_pad)
activation_60 = F.relu(batch_normalization_60)
batch_normalization_56 = self.batch_normalization_56(conv2d_56)
batch_normalization_53 = self.batch_normalization_53(conv2d_53)
activation_56 = F.relu(batch_normalization_56)
activation_53 = F.relu(batch_normalization_53)
conv2d_57_pad = F.pad(activation_56, (3, 3, 0, 0))
conv2d_57 = self.conv2d_57(conv2d_57_pad)
conv2d_54_pad = F.pad(activation_53, (0, 0, 3, 3))
conv2d_54 = self.conv2d_54(conv2d_54_pad)
batch_normalization_57 = self.batch_normalization_57(conv2d_57)
batch_normalization_54 = self.batch_normalization_54(conv2d_54)
activation_57 = F.relu(batch_normalization_57)
activation_54 = F.relu(batch_normalization_54)
conv2d_58_pad = F.pad(activation_57, (0, 0, 3, 3))
conv2d_58 = self.conv2d_58(conv2d_58_pad)
batch_normalization_58 = self.batch_normalization_58(conv2d_58)
activation_58 = F.relu(batch_normalization_58)
conv2d_59_pad = F.pad(activation_58, (3, 3, 0, 0))
conv2d_59 = self.conv2d_59(conv2d_59_pad)
batch_normalization_59 = self.batch_normalization_59(conv2d_59)
activation_59 = F.relu(batch_normalization_59)
mixed6 = torch.cat((activation_51, activation_54, activation_59, activation_60), 1)
conv2d_65 = self.conv2d_65(mixed6)
conv2d_62 = self.conv2d_62(mixed6)
average_pooling2d_7 = F.avg_pool2d(mixed6, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_61 = self.conv2d_61(mixed6)
batch_normalization_65 = self.batch_normalization_65(conv2d_65)
batch_normalization_62 = self.batch_normalization_62(conv2d_62)
conv2d_70 = self.conv2d_70(average_pooling2d_7)
batch_normalization_61 = self.batch_normalization_61(conv2d_61)
activation_65 = F.relu(batch_normalization_65)
activation_62 = F.relu(batch_normalization_62)
batch_normalization_70 = self.batch_normalization_70(conv2d_70)
activation_61 = F.relu(batch_normalization_61)
conv2d_66_pad = F.pad(activation_65, (0, 0, 3, 3))
conv2d_66 = self.conv2d_66(conv2d_66_pad)
conv2d_63_pad = F.pad(activation_62, (3, 3, 0, 0))
conv2d_63 = self.conv2d_63(conv2d_63_pad)
activation_70 = F.relu(batch_normalization_70)
batch_normalization_66 = self.batch_normalization_66(conv2d_66)
batch_normalization_63 = self.batch_normalization_63(conv2d_63)
activation_66 = F.relu(batch_normalization_66)
activation_63 = F.relu(batch_normalization_63)
conv2d_67_pad = F.pad(activation_66, (3, 3, 0, 0))
conv2d_67 = self.conv2d_67(conv2d_67_pad)
conv2d_64_pad = F.pad(activation_63, (0, 0, 3, 3))
conv2d_64 = self.conv2d_64(conv2d_64_pad)
batch_normalization_67 = self.batch_normalization_67(conv2d_67)
batch_normalization_64 = self.batch_normalization_64(conv2d_64)
activation_67 = F.relu(batch_normalization_67)
activation_64 = F.relu(batch_normalization_64)
conv2d_68_pad = F.pad(activation_67, (0, 0, 3, 3))
conv2d_68 = self.conv2d_68(conv2d_68_pad)
batch_normalization_68 = self.batch_normalization_68(conv2d_68)
activation_68 = F.relu(batch_normalization_68)
conv2d_69_pad = F.pad(activation_68, (3, 3, 0, 0))
conv2d_69 = self.conv2d_69(conv2d_69_pad)
batch_normalization_69 = self.batch_normalization_69(conv2d_69)
activation_69 = F.relu(batch_normalization_69)
mixed7 = torch.cat((activation_61, activation_64, activation_69, activation_70), 1)
conv2d_73 = self.conv2d_73(mixed7)
conv2d_71 = self.conv2d_71(mixed7)
max_pooling2d_4 = F.max_pool2d(mixed7, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
batch_normalization_73 = self.batch_normalization_73(conv2d_73)
batch_normalization_71 = self.batch_normalization_71(conv2d_71)
activation_73 = F.relu(batch_normalization_73)
activation_71 = F.relu(batch_normalization_71)
conv2d_74_pad = F.pad(activation_73, (3, 3, 0, 0))
conv2d_74 = self.conv2d_74(conv2d_74_pad)
conv2d_72 = self.conv2d_72(activation_71)
batch_normalization_74 = self.batch_normalization_74(conv2d_74)
batch_normalization_72 = self.batch_normalization_72(conv2d_72)
activation_74 = F.relu(batch_normalization_74)
activation_72 = F.relu(batch_normalization_72)
conv2d_75_pad = F.pad(activation_74, (0, 0, 3, 3))
conv2d_75 = self.conv2d_75(conv2d_75_pad)
batch_normalization_75 = self.batch_normalization_75(conv2d_75)
activation_75 = F.relu(batch_normalization_75)
conv2d_76 = self.conv2d_76(activation_75)
batch_normalization_76 = self.batch_normalization_76(conv2d_76)
activation_76 = F.relu(batch_normalization_76)
mixed8 = torch.cat((activation_72, activation_76, max_pooling2d_4), 1)
conv2d_81 = self.conv2d_81(mixed8)
conv2d_78 = self.conv2d_78(mixed8)
average_pooling2d_8 = F.avg_pool2d(mixed8, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_77 = self.conv2d_77(mixed8)
batch_normalization_81 = self.batch_normalization_81(conv2d_81)
batch_normalization_78 = self.batch_normalization_78(conv2d_78)
conv2d_85 = self.conv2d_85(average_pooling2d_8)
batch_normalization_77 = self.batch_normalization_77(conv2d_77)
activation_81 = F.relu(batch_normalization_81)
activation_78 = F.relu(batch_normalization_78)
batch_normalization_85 = self.batch_normalization_85(conv2d_85)
activation_77 = F.relu(batch_normalization_77)
conv2d_82_pad = F.pad(activation_81, (1, 1, 1, 1))
conv2d_82 = self.conv2d_82(conv2d_82_pad)
conv2d_79_pad = F.pad(activation_78, (1, 1, 0, 0))
conv2d_79 = self.conv2d_79(conv2d_79_pad)
conv2d_80_pad = F.pad(activation_78, (0, 0, 1, 1))
conv2d_80 = self.conv2d_80(conv2d_80_pad)
activation_85 = F.relu(batch_normalization_85)
batch_normalization_82 = self.batch_normalization_82(conv2d_82)
batch_normalization_79 = self.batch_normalization_79(conv2d_79)
batch_normalization_80 = self.batch_normalization_80(conv2d_80)
activation_82 = F.relu(batch_normalization_82)
activation_79 = F.relu(batch_normalization_79)
activation_80 = F.relu(batch_normalization_80)
conv2d_83_pad = F.pad(activation_82, (1, 1, 0, 0))
conv2d_83 = self.conv2d_83(conv2d_83_pad)
conv2d_84_pad = F.pad(activation_82, (0, 0, 1, 1))
conv2d_84 = self.conv2d_84(conv2d_84_pad)
mixed9_0 = torch.cat((activation_79, activation_80), 1)
batch_normalization_83 = self.batch_normalization_83(conv2d_83)
batch_normalization_84 = self.batch_normalization_84(conv2d_84)
activation_83 = F.relu(batch_normalization_83)
activation_84 = F.relu(batch_normalization_84)
concatenate_1 = torch.cat((activation_83, activation_84), 1)
mixed9 = torch.cat((activation_77, mixed9_0, concatenate_1, activation_85), 1)
conv2d_90 = self.conv2d_90(mixed9)
conv2d_87 = self.conv2d_87(mixed9)
average_pooling2d_9 = F.avg_pool2d(mixed9, kernel_size=(3, 3), stride=(1, 1), padding=(1,), ceil_mode=False, count_include_pad=False)
conv2d_86 = self.conv2d_86(mixed9)
batch_normalization_90 = self.batch_normalization_90(conv2d_90)
batch_normalization_87 = self.batch_normalization_87(conv2d_87)
conv2d_94 = self.conv2d_94(average_pooling2d_9)
batch_normalization_86 = self.batch_normalization_86(conv2d_86)
activation_90 = F.relu(batch_normalization_90)
activation_87 = F.relu(batch_normalization_87)
batch_normalization_94 = self.batch_normalization_94(conv2d_94)
activation_86 = F.relu(batch_normalization_86)
conv2d_91_pad = F.pad(activation_90, (1, 1, 1, 1))
conv2d_91 = self.conv2d_91(conv2d_91_pad)
conv2d_88_pad = F.pad(activation_87, (1, 1, 0, 0))
conv2d_88 = self.conv2d_88(conv2d_88_pad)
conv2d_89_pad = F.pad(activation_87, (0, 0, 1, 1))
conv2d_89 = self.conv2d_89(conv2d_89_pad)
activation_94 = F.relu(batch_normalization_94)
batch_normalization_91 = self.batch_normalization_91(conv2d_91)
batch_normalization_88 = self.batch_normalization_88(conv2d_88)
batch_normalization_89 = self.batch_normalization_89(conv2d_89)
activation_91 = F.relu(batch_normalization_91)
activation_88 = F.relu(batch_normalization_88)
activation_89 = F.relu(batch_normalization_89)
conv2d_92_pad = F.pad(activation_91, (1, 1, 0, 0))
conv2d_92 = self.conv2d_92(conv2d_92_pad)
conv2d_93_pad = F.pad(activation_91, (0, 0, 1, 1))
conv2d_93 = self.conv2d_93(conv2d_93_pad)
mixed9_1 = torch.cat((activation_88, activation_89), 1)
batch_normalization_92 = self.batch_normalization_92(conv2d_92)
batch_normalization_93 = self.batch_normalization_93(conv2d_93)
activation_92 = F.relu(batch_normalization_92)
activation_93 = F.relu(batch_normalization_93)
concatenate_2 = torch.cat((activation_92, activation_93), 1)
mixed10 = torch.cat((activation_86, mixed9_1, concatenate_2, activation_94), 1)
avg_pool = F.avg_pool2d(input = mixed10, kernel_size = mixed10.size()[2:])
avg_pool_flatten = avg_pool.view(avg_pool.size(0), -1)
predictions = self.predictions(avg_pool_flatten)
predictions_activation = F.softmax(predictions)
return predictions_activation