-
Notifications
You must be signed in to change notification settings - Fork 10
/
main_Semantic3D.py
472 lines (402 loc) · 22.8 KB
/
main_Semantic3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from os.path import join, exists, dirname, abspath
from SQN import Network
from tester_Semantic3D import ModelTester
from helper_ply import read_ply
from tool import Plot
from tool import DataProcessing as DP
from tool import ConfigSemantic3D as cfg
import tensorflow as tf
import numpy as np
import pickle, argparse, os, shutil
class Semantic3D:
def __init__(self, labeled_point, gen_pseudo, retrain):
self.name = 'Semantic3D'
# set your dataset path here
self.path = '/media/qingyong/QY/Semantic3D'
self.label_to_names = {0: 'unlabeled', 1: 'man-made terrain', 2: 'natural terrain', 3: 'high vegetation',
4: 'low vegetation', 5: 'buildings', 6: 'hard scape', 7: 'scanning artefacts', 8: 'cars'}
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.ignored_labels = np.sort([0])
# Original data path
self.original_folder = join(self.path, 'original_data')
self.full_pc_folder = join(self.path, 'original_ply')
self.sub_pc_folder = join(self.path, 'input_{:.3f}'.format(cfg.sub_grid_size))
# Following KPConv to do the train-validation split
self.all_splits = [0, 1, 4, 5, 3, 4, 3, 0, 1, 2, 3, 4, 2, 0, 5]
# self.all_splits = [0, 0, 4, 5, 3, 4, 1, 0, 1, 2, 3, 4, 2, 1, 0]
self.use_val = True # whether use validation set or not
if self.use_val:
self.val_split = 1
else:
self.val_split = 'no_val'
# train files
self.train_files = []
self.val_files = []
self.test_files = []
cloud_names = [file_name[:-4] for file_name in os.listdir(self.original_folder) if file_name[-4:] == '.txt']
for pc_name in cloud_names:
if exists(join(self.original_folder, pc_name + '.labels')):
self.train_files.append(join(self.sub_pc_folder, pc_name + '.ply'))
else:
self.test_files.append(join(self.full_pc_folder, pc_name + '.ply'))
self.train_files = np.sort(self.train_files)
self.test_files = np.sort(self.test_files)
for i, file_path in enumerate(self.train_files):
if self.all_splits[i] == self.val_split:
self.val_files.append(file_path)
self.train_files = np.sort([x for x in self.train_files if x not in self.val_files])
self.gen_pseudo = gen_pseudo
if gen_pseudo:
self.train_files, self.test_files = self.test_files, self.train_files
# initialize
if '%' in labeled_point:
r = float(labeled_point[:-1]) / 100
self.num_with_anno_per_batch = max(int(cfg.num_points * r), 1)
else:
self.num_with_anno_per_batch = cfg.num_classes
self.num_per_class = np.zeros(self.num_classes)
self.val_proj = []
self.val_labels = []
self.test_proj = []
self.test_labels = []
self.possibility = {}
self.min_possibility = {}
self.class_weight = {}
self.input_trees = {'training': [], 'validation': [], 'test': []}
self.input_colors = {'training': [], 'validation': [], 'test': []}
self.input_labels = {'training': [], 'validation': [], 'test': []}
self.input_names = {'training': [], 'validation': [], 'test': []}
# Ascii files dict for testing
self.ascii_files = {
'MarketplaceFeldkirch_Station4_rgb_intensity-reduced.ply': 'marketsquarefeldkirch4-reduced.labels',
'sg27_station10_rgb_intensity-reduced.ply': 'sg27_10-reduced.labels',
'sg28_Station2_rgb_intensity-reduced.ply': 'sg28_2-reduced.labels',
'StGallenCathedral_station6_rgb_intensity-reduced.ply': 'stgallencathedral6-reduced.labels',
'birdfountain_station1_xyz_intensity_rgb.ply': 'birdfountain1.labels',
'castleblatten_station1_intensity_rgb.ply': 'castleblatten1.labels',
'castleblatten_station5_xyz_intensity_rgb.ply': 'castleblatten5.labels',
'marketplacefeldkirch_station1_intensity_rgb.ply': 'marketsquarefeldkirch1.labels',
'marketplacefeldkirch_station4_intensity_rgb.ply': 'marketsquarefeldkirch4.labels',
'marketplacefeldkirch_station7_intensity_rgb.ply': 'marketsquarefeldkirch7.labels',
'sg27_station10_intensity_rgb.ply': 'sg27_10.labels',
'sg27_station3_intensity_rgb.ply': 'sg27_3.labels',
'sg27_station6_intensity_rgb.ply': 'sg27_6.labels',
'sg27_station8_intensity_rgb.ply': 'sg27_8.labels',
'sg28_station2_intensity_rgb.ply': 'sg28_2.labels',
'sg28_station5_xyz_intensity_rgb.ply': 'sg28_5.labels',
'stgallencathedral_station1_intensity_rgb.ply': 'stgallencathedral1.labels',
'stgallencathedral_station3_intensity_rgb.ply': 'stgallencathedral3.labels',
'stgallencathedral_station6_intensity_rgb.ply': 'stgallencathedral6.labels'}
self.load_sub_sampled_clouds(cfg.sub_grid_size, labeled_point, retrain)
for ignore_label in self.ignored_labels:
self.num_per_class = np.delete(self.num_per_class, ignore_label)
def load_sub_sampled_clouds(self, sub_grid_size, labeled_point, retrain):
tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
files = np.hstack((self.train_files, self.val_files, self.test_files))
for i, file_path in enumerate(files):
cloud_name = file_path.split('/')[-1][:-4]
print('Load_pc_' + str(i) + ': ' + cloud_name)
if file_path in self.val_files:
cloud_split = 'validation'
elif file_path in self.train_files:
cloud_split = 'training'
else:
cloud_split = 'test'
# Name of the input files
kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))
sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))
# read ply with data
data = read_ply(sub_ply_file)
sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T
if cloud_split == 'test':
sub_labels = data['class']
else:
sub_labels = data['class']
self.num_per_class += DP.get_num_class_from_label(sub_labels, self.num_classes)
# ======================================== #
# Random Sparse Annotation #
# ======================================== #
if cloud_split == 'training' and not self.gen_pseudo:
if '%' in labeled_point:
# Randomly annotate x% of the points, keeping the rest of the points as unlabeled (i.e., label=0)
new_labels = np.zeros_like(sub_labels, dtype=np.int32)
num_pts = len(sub_labels)
r = float(labeled_point[:-1]) / 100
num_with_anno = max(int(num_pts * r), 1)
valid_idx = np.where(sub_labels)[0]
idx_with_anno = np.random.choice(valid_idx, num_with_anno, replace=False)
new_labels[idx_with_anno] = sub_labels[idx_with_anno]
sub_labels = new_labels
else:
# Randomly annotate x point (e.g., 1pt setting) for each class
for i in range(self.num_classes):
ind_per_class = np.where(sub_labels == i)[0] # index of points belongs to a specific class
num_per_class = len(ind_per_class)
if num_per_class > 0:
num_with_anno = int(labeled_point)
num_without_anno = num_per_class - num_with_anno
idx_without_anno = np.random.choice(ind_per_class, num_without_anno, replace=False)
sub_labels[idx_without_anno] = 0
# =================================================================== #
# retrain the model with predicted pseudo labels #
# =================================================================== #
if retrain:
pseudo_label_path = './test'
temp = read_ply(join(pseudo_label_path, cloud_name + '.ply'))
pseudo_label = temp['pred']
pseudo_label_ratio = 0.01
pseudo_label[sub_labels != 0] = sub_labels[sub_labels != 0]
sub_labels = pseudo_label
self.num_with_anno_per_batch = int(cfg.num_points * pseudo_label_ratio)
# Read pkl with search tree
with open(kd_tree_file, 'rb') as f:
search_tree = pickle.load(f)
self.input_trees[cloud_split] += [search_tree]
self.input_colors[cloud_split] += [sub_colors]
self.input_names[cloud_split] += [cloud_name]
if cloud_split in ['training', 'validation'] or self.gen_pseudo:
self.input_labels[cloud_split] += [sub_labels]
# Get validation and test re_projection indices
print('\nPreparing reprojection indices for validation and test')
for i, file_path in enumerate(files):
# get cloud name and split
cloud_name = file_path.split('/')[-1][:-4]
# Validation projection and labels
if file_path in self.val_files:
proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
with open(proj_file, 'rb') as f:
proj_idx, labels = pickle.load(f)
self.val_proj += [proj_idx]
self.val_labels += [labels]
# Test projection
if file_path in self.test_files:
proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
with open(proj_file, 'rb') as f:
proj_idx, labels = pickle.load(f)
self.test_proj += [proj_idx]
self.test_labels += [labels]
print('finished')
return
def get_batch_gen(self, split):
if split == 'training':
num_per_epoch = cfg.train_steps * cfg.batch_size
elif split == 'validation':
num_per_epoch = cfg.val_steps * cfg.val_batch_size
elif split == 'test':
num_per_epoch = cfg.val_steps * cfg.val_batch_size
# Reset possibility
self.possibility[split] = []
self.min_possibility[split] = []
self.class_weight[split] = []
for i, tree in enumerate(self.input_trees[split]):
self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]
if split == 'training' or (split == 'validation' and self.use_val):
_, num_class_total = np.unique(np.hstack(self.input_labels[split]), return_counts=True)
self.class_weight[split] += [np.squeeze([num_class_total / np.sum(num_class_total)], axis=0)]
def spatially_regular_gen():
# Generator loop
for i in range(num_per_epoch): # num_per_epoch
# Choose a random cloud
cloud_idx = int(np.argmin(self.min_possibility[split]))
# choose the point with the minimum of possibility as query point
point_ind = np.argmin(self.possibility[split][cloud_idx])
# Get points from tree structure
points = np.array(self.input_trees[split][cloud_idx].data, copy=False)
# Center point of input region
center_point = points[point_ind, :].reshape(1, -1)
# Add noise to the center point
noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)
pick_point = center_point + noise.astype(center_point.dtype)
query_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]
query_idx = DP.shuffle_idx(query_idx)
# Collect points and colors
queried_pc_xyz = points[query_idx]
queried_pc_xyz[:, 0:2] = queried_pc_xyz[:, 0:2] - pick_point[:, 0:2]
queried_pc_colors = self.input_colors[split][cloud_idx][query_idx]
if split == 'test' or (split == 'validation' and not self.use_val):
if not self.gen_pseudo:
queried_pc_labels = np.zeros(queried_pc_xyz.shape[0])
else:
queried_pc_labels = self.input_labels[split][cloud_idx][query_idx]
queried_pt_weight = 1
else:
queried_pc_labels = self.input_labels[split][cloud_idx][query_idx]
queried_pc_labels = np.array([self.label_to_idx[l] for l in queried_pc_labels])
queried_pt_weight = np.array([self.class_weight[split][0][n] for n in queried_pc_labels])
dists = np.sum(np.square((points[query_idx] - pick_point).astype(np.float32)), axis=1)
delta = np.square(1 - dists / np.max(dists)) * queried_pt_weight
self.possibility[split][cloud_idx][query_idx] += delta
self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))
if split == 'training':
unique_label_value = np.unique(queried_pc_labels)
if len(unique_label_value) <= 1:
i -= 1
continue
else:
# ================================================================== #
# Keep the same number of labeled points per batch #
# ================================================================== #
idx_with_anno = np.where(queried_pc_labels != self.ignored_labels[0])[0]
num_with_anno = len(idx_with_anno)
if num_with_anno > self.num_with_anno_per_batch:
idx_with_anno = np.random.choice(idx_with_anno, self.num_with_anno_per_batch, replace=False)
elif num_with_anno < self.num_with_anno_per_batch:
dup_idx = np.random.choice(idx_with_anno, self.num_with_anno_per_batch - len(idx_with_anno))
idx_with_anno = np.concatenate([idx_with_anno, dup_idx], axis=0)
xyz_with_anno = queried_pc_xyz[idx_with_anno]
labels_with_anno = queried_pc_labels[idx_with_anno]
else:
xyz_with_anno = queried_pc_xyz
labels_with_anno = queried_pc_labels
if True:
yield (queried_pc_xyz,
queried_pc_colors.astype(np.float32),
queried_pc_labels,
query_idx.astype(np.int32),
np.array([cloud_idx], dtype=np.int32),
xyz_with_anno.astype(np.float32),
labels_with_anno.astype(np.int32))
gen_func = spatially_regular_gen
gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.float32, tf.int32)
gen_shapes = ([None, 3], [None, 3], [None], [None], [None], [None, 3], [None])
return gen_func, gen_types, gen_shapes
def get_tf_mapping(self):
def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx, batch_xyz_anno,
batch_label_anno):
batch_features = tf.map_fn(self.tf_augment_input, [batch_xyz, batch_features], dtype=tf.float32)
input_points = []
input_neighbors = []
input_pools = []
input_up_samples = []
for i in range(cfg.num_layers):
neigh_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32)
sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
pool_i = neigh_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32)
input_points.append(batch_xyz)
input_neighbors.append(neigh_idx)
input_pools.append(pool_i)
input_up_samples.append(up_i)
batch_xyz = sub_points
input_list = input_points + input_neighbors + input_pools + input_up_samples
input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx, batch_xyz_anno,
batch_label_anno]
return input_list
return tf_map
@staticmethod
def tf_augment_input(inputs):
xyz = inputs[0]
features = inputs[1]
theta = tf.random_uniform((1,), minval=0, maxval=2 * np.pi)
# Rotation matrices
c, s = tf.cos(theta), tf.sin(theta)
cs0 = tf.zeros_like(c)
cs1 = tf.ones_like(c)
R = tf.stack([c, -s, cs0, s, c, cs0, cs0, cs0, cs1], axis=1)
stacked_rots = tf.reshape(R, (3, 3))
# Apply rotations
transformed_xyz = tf.reshape(tf.matmul(xyz, stacked_rots), [-1, 3])
# Choose random scales for each example
min_s = cfg.augment_scale_min
max_s = cfg.augment_scale_max
if cfg.augment_scale_anisotropic:
s = tf.random_uniform((1, 3), minval=min_s, maxval=max_s)
else:
s = tf.random_uniform((1, 1), minval=min_s, maxval=max_s)
symmetries = []
for i in range(3):
if cfg.augment_symmetries[i]:
symmetries.append(tf.round(tf.random_uniform((1, 1))) * 2 - 1)
else:
symmetries.append(tf.ones([1, 1], dtype=tf.float32))
s *= tf.concat(symmetries, 1)
# Create N x 3 vector of scales to multiply with stacked_points
stacked_scales = tf.tile(s, [tf.shape(transformed_xyz)[0], 1])
# Apply scales
transformed_xyz = transformed_xyz * stacked_scales
noise = tf.random_normal(tf.shape(transformed_xyz), stddev=cfg.augment_noise)
transformed_xyz = transformed_xyz + noise
rgb = features[:, :3]
stacked_features = tf.concat([transformed_xyz, rgb, features[:, 3:4]], axis=-1)
return stacked_features
def init_input_pipeline(self):
print('Initiating input pipelines')
cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
gen_function_val, _, _ = self.get_batch_gen('validation')
gen_function_test, _, _ = self.get_batch_gen('test')
self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes)
self.batch_train_data = self.train_data.batch(cfg.batch_size)
self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
self.batch_test_data = self.test_data.batch(cfg.val_batch_size)
map_func = self.get_tf_mapping()
self.batch_train_data = self.batch_train_data.map(map_func=map_func)
self.batch_val_data = self.batch_val_data.map(map_func=map_func)
self.batch_test_data = self.batch_test_data.map(map_func=map_func)
self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
self.batch_test_data = self.batch_test_data.prefetch(cfg.val_batch_size)
iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
self.flat_inputs = iter.get_next()
self.train_init_op = iter.make_initializer(self.batch_train_data)
self.val_init_op = iter.make_initializer(self.batch_val_data)
self.test_init_op = iter.make_initializer(self.batch_test_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
parser.add_argument('--labeled_point', type=str, default='0.1%', help='0.1%/1%/10%/100%')
parser.add_argument('--gen_pseudo', default=False, action='store_true', help='generate pseudo labels or not')
parser.add_argument('--retrain', default=False, action='store_true', help='Re-training with pseudo labels or not')
FLAGS = parser.parse_args()
GPU_ID = FLAGS.gpu
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(GPU_ID)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
Mode = FLAGS.mode
print('Settings:')
print('Mode:', FLAGS.mode)
print('Labeled_point', FLAGS.labeled_point)
print('gen_pseudo', FLAGS.gen_pseudo)
print('retrain', FLAGS.retrain)
shutil.rmtree('__pycache__') if exists('__pycache__') else None
if Mode == 'train':
# shutil.rmtree('results') if exists('results') else None
shutil.rmtree('train_log') if exists('train_log') else None
for f in os.listdir(dirname(abspath(__file__))):
if f.startswith('log_'):
os.remove(f)
dataset = Semantic3D(FLAGS.labeled_point, FLAGS.gen_pseudo, FLAGS.retrain)
dataset.init_input_pipeline()
if Mode == 'train':
model = Network(dataset, cfg, FLAGS.retrain)
model.train(dataset)
elif Mode == 'test':
cfg.saving = False
model = Network(dataset, cfg)
chosen_snapshot = -1
logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
chosen_folder = logs[-1]
snap_path = join(chosen_folder, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
chosen_step = np.sort(snap_steps)[-1]
chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
tester = ModelTester(model, dataset, restore_snap=chosen_snap)
tester.evaluate(model, dataset, FLAGS.gen_pseudo)
shutil.rmtree('train_log') if exists('train_log') else None
else:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(dataset.train_init_op)
while True:
a = sess.run(dataset.flat_inputs)
pos = a[0]
sub_pos1 = a[1]
label = a[21]
Plot.draw_pc_sem_ins(pos[0, :, :], label[0, :])
Plot.draw_pc_sem_ins(sub_pos1[0, :, :], label[0, 0:np.shape(sub_pos1)[1]])