-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathRisk_budget_functions.R
748 lines (632 loc) · 29.7 KB
/
Risk_budget_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
PortfolioOptim = function( minriskcriterion = "mES" , MinMaxComp = F, percriskcontribcriterion = "mES" ,
R = NULL, mu = NULL , sigma = NULL, M3=NULL,M4=NULL, alpha = 0.05, alphariskbudget = 0.05,
lower = NULL , upper = NULL, Riskupper = NULL, Returnlower = NULL, RBlower = NULL , RBupper = NULL, precision = 1e-3 ,
controlDE = list( VTR = 0 , NP=200, trace = FALSE ) , heuristic=TRUE ){
# Description:
# This function produces the portfolio that minimimizes
# either the portfolio risk (when MinMaxComp = F) or the portfolio concentration (when MinMaxComp = T)
# subject to
# lower <= weights <= upper
# risk <= Riskupper
# expected return >= Returnlower
# RBlower <= percentage risk <= RBupper
# Input:
# Either the multivariate return series is given or estimates of the mean, covariance, coskewness or cokurtosis
require(zoo); require(PerformanceAnalytics); require(DEoptim)
if( !is.null(R) ){
R = clean.boudt2( R , alpha = alphariskbudget )[[1]];
T = nrow(R);N=ncol(R)
mu = matrix( as.vector(apply(R,2,'mean')),ncol=1);
sigma = cov(R);
M3 = PerformanceAnalytics:::M3.MM(R)
M4 = PerformanceAnalytics:::M4.MM(R)
}else{ N = length(mu) }
if( is.null(lower) ){ lower = rep(0,N) } ; if( is.null(upper) ){ upper = rep(1,N) }
if( is.null(RBlower) ){ RBlower = rep(-Inf,N) } ; if( is.null(RBupper) ){ RBupper = rep(Inf,N) }
if( is.null(Riskupper) ){ Riskupper = Inf } ; if( is.null(Returnlower) ){ Returnlower = -Inf }
switch( percriskcontribcriterion ,
StdDev = { percriskcontrib = function(w){ return( Portsd(w,mu=mu,sigma=sigma) ) }},
GVaR = { percriskcontrib = function(w){ return( PortgausVaR(w,alpha=alphariskbudget,mu=mu,sigma=sigma) ) }},
GES = { percriskcontrib = function(w){ return( PortgausES(w,mu=mu,alpha=alphariskbudget,sigma=sigma) ) }},
mVaR = { percriskcontrib = function(w){ return( PortMVaR(w,mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4) ) }},
mES = { percriskcontrib = function(w){ return( operPortMES(w,mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4) ) }}
) #end function that finds out which percentage risk contribution criterion to use
switch( minriskcriterion ,
StdDev = { prisk = function(w){ return( stddevfun(w,mu=mu,sigma=sigma) ) }},
GVaR = { prisk = function(w){ return( gausVaRfun(w,alpha=alpha,mu=mu,sigma=sigma) ) }},
GES = { prisk = function(w){ return( gausESfun(w,mu=mu,alpha=alpha,sigma=sigma) ) }},
mVaR = { prisk = function(w){ return( MVaRfun(w,mu=mu,alpha=alpha,sigma=sigma,M3=M3,M4=M4) )}},
mES = { prisk = function(w){ return( operMESfun(w,mu=mu,alpha=alpha,sigma=sigma,M3=M3,M4=M4)) }}
) #end function that finds out which risk function to minimize
abspenalty = 1e6; relpenalty = 100*N;
if( heuristic ){
objective = function( w ){
w = w/sum(w)
cont = percriskcontrib( w ); percrisk = cont[[3]]; crisk = cont[[2]] ;
if(MinMaxComp){ out = max( crisk ) }else{ out = prisk(w) }
# add weight constraints
out_con = out + out*abspenalty*sum( 1*( w < lower )+1*( w > upper ) )
# add risk budget constraint
con1 = sum( (percrisk-RBupper)*( percrisk > RBupper ),na.rm=TRUE ) ; if( is.na(con1) ){ con1 = 0 } # because of Inf*0
con2 = sum( (RBlower-percrisk)*( percrisk < RBlower ),na.rm=TRUE ); if( is.na(con2) ){ con2 = 0 }
out_con = out_con + out*relpenalty*(con1+con2)
# add minimum risk constraint
con = ( prisk(w) - Riskupper)*( prisk(w) > Riskupper ); if( is.na(con) ){ con = 0 }
out_con = out_con + out*relpenalty*con
# add minimum return constraint
# portfolio return and risk are in the same unit, but portfolio return is typically some orders of magnitude smaller
# say: as a very conservative choice: 100
preturn = sum( w*mu ) ;
con = ( Returnlower - preturn)*( preturn < Returnlower ); if( is.na(con) ){ con = 0 }
out_con = out_con + out*100*relpenalty*con
return(out_con)
}
minw = DEoptim( fn = objective , lower = lower , upper = upper , control = controlDE)
fvalues = minw$member$bestval
diff = as.vector( quantile(fvalues,0.10) - min(fvalues) )
print(c("diff",diff))
best = min( fvalues ) ; print(best)
bestsol = minw ;
while( diff>1e-6 ){
pop = as.matrix(minw$member$pop)
pop[1,] = minw$optim$bestmem;
minw = DEoptim( fn = objective , lower = lower , upper = upper ,
control = list( itermax = 150, NP=as.numeric(nrow(pop)) , initialpop=pop,trace=F ) )
fvalues = minw$member$bestval
diff = best - min(fvalues) ;
if( diff > 0 ){ best = min( fvalues ) ; bestsol = minw ; print(best) }
}
minw = bestsol$optim$bestmem/sum(bestsol$optim$bestmem) ; #full investment constraint
}else{
objective = function( w ){
if(sum(w)==0){w=w+0.001}
w = w/sum(w)
cont = percriskcontrib( w ); percrisk = cont[[3]]; crisk = cont[[2]] ;
if(MinMaxComp){ out = max( crisk ) }else{ out = prisk(w) }
# add risk budget constraint
con1 = sum( (percrisk-RBupper)*( percrisk > RBupper ),na.rm=TRUE ) ; if( is.na(con1) ){ con1 = 0 } # because of Inf*0
con2 = sum( (RBlower-percrisk)*( percrisk < RBlower ),na.rm=TRUE ); if( is.na(con2) ){ con2 = 0 }
out_con = out + out*relpenalty*(con1+con2)
# add minimum risk constraint
con = ( prisk(w) - Riskupper)*( prisk(w) > Riskupper ); if( is.na(con) ){ con = 0 }
out_con = out_con + out*relpenalty*con
return(out_con)
}
if(Returnlower==-Inf){
inittheta = rep(1,N)/N
out = optim( par=inittheta, f = objective, lower = lower, upper = upper )
}else{
Amat = rbind(diag(x =1,nrow=N,ncol=N), diag(x =-1,nrow=N,ncol=N), rep(1,N), rep(-1,N),as.vector(mu))
inittheta = rep(0.001,N);
inittheta[mu==max(mu)] = 1; inittheta = 1-sum(inittheta[mu!=max(mu)] );
out = constrOptim( theta=inittheta, f = objective, grad=NULL,ui=Amat,
ci = c(rep(0,N),rep(-1,N),0.99999,-1.0001,Returnlower) )
}
minw = out$par/sum(out$par)
}
cont = percriskcontrib( minw ); percrisk = cont[[3]]; crisk = cont[[2]] ;
# check
print( "out = list( minw , sum( minw*mu ) , prisk(minw) , percriskcontrib(minw)" )
out = list( minw , sum( minw*mu ) , prisk(minw) , percrisk , crisk )
print( out )
return(out)
}
findportfolio.dynamic = function(R, from, to, names.input = NA, names.assets,
p = 0.95 , priskbudget = 0.95, mincriterion = "mES" , percriskcontribcriterion = "mES" ,
strategy , controlDE = list( VTR = 0 , NP=200 ) )
{ # @author Kris Boudt and Brian G. Peterson
# Description:
#
# Performs a loop over the reallocation periods with estimation samples given by from:to
# It calls the function RBconportfolio to obtain the optimal weights of the strategy.
#
# @todo
#
# R matrix/zoo holding historical returns on risky assets
#
# names vector holding the names of the .csv files to be read
#
# from, to define the estimation sample
#
# criteria the criterion to be optimized
#
# columns.crit the columns of R in which the criteria are located
#
# percriskcontribcriterion risk measure used for the risk budget constraints
#
# strategy = c( "EqualRisk" , "EqualWeight" , "MinRisk" , "MinRiskConc" ,
# "MinRisk_PositionLimit" , "MinRisk_RiskLimit" , "MinRisk_ReturnTarget",
# "MinRiskConc_PositionLimit" , "MinRiskConc_RiskLimit" , "MinRiskConc_ReturnTarget")
# Return:
# List with first element optimal weights per reallocation period and associated percentage CVaR contributions.
# Create a matrix that will hold for each method and each vector the best weights
cPeriods = length(from);
out = matrix( rep(0, cPeriods*(cAssets)) , ncol= (cAssets) );
RCout = matrix( rep(0, cPeriods*(cAssets)) , ncol= (cAssets) );
# first cPeriods rows correspond to cCriteria[1] and so on
# downside risk
alpha = 1 - p;
alphariskbudget = 1-priskbudget;
# Estimation of the return mean vector, covariance, coskewness and cokurtosis matrix
if(strategy=="EqualRisk"){
lower = rep(0,cAssets); upper=rep(1,cAssets)
RBlower = rep(1/cAssets,cAssets) ; RBupper = rep(1/cAssets,cAssets) ;
}
if(strategy=="EqualWeight"){
lower = rep(1/cAssets,cAssets); upper=rep(1/cAssets,cAssets)
RBlower = rep(-Inf,cAssets) ; RBupper = rep(Inf,cAssets) ;
}
if(strategy=="MinRisk" | strategy=="MinRiskConc" | strategy=="MinRisk_ReturnTarget" | strategy=="MinRiskConc_ReturnTarget"){
lower = rep(0,cAssets); upper=rep(1,cAssets)
RBlower = rep(-Inf,cAssets) ; RBupper = rep(Inf,cAssets) ;
}
MinMaxComp = F; mutarget = -Inf;
if( strategy=="MinRiskConc" | strategy=="MinRiskConc_PositionLimit" | strategy=="MinRiskConc_RiskLimit" | strategy=="MinRiskConc_ReturnTarget" ){
MinMaxComp = T;
}
if(strategy=="MinRisk_PositionLimit" | strategy=="MinRiskConc_PositionLimit"){
lower = rep(0,cAssets); upper=rep(0.4,cAssets)
RBlower = rep(-Inf,cAssets) ; RBupper = rep(Inf,cAssets) ;
}
if(strategy=="MinRisk_RiskLimit" | strategy=="MinRiskConc_RiskLimit"){
lower = rep(0,cAssets); upper=rep(1,cAssets)
RBlower = rep(-Inf,cAssets) ; RBupper = rep(0.40,cAssets) ;
}
for( per in c(1:cPeriods) ){
print("-----------New estimation period ends on observation------------------")
print( paste(to[per],"out of total number of obs equal to", max(to) ));
print("----------------------------------------------------------------")
# Estimate GARCH model with data from inception
inception.R = window(R, start = as.Date(from[1]) , end = as.Date(to[per]) );
# Estimate comoments of innovations with rolling estimation windows
in.sample.R = window(R, start = as.Date(from[per]) , end = as.Date(to[per]) );
in.sample.R = checkData(in.sample.R, method="matrix");
# Estimation of mean return
M = c();
library(TTR)
Tmean = 47 # monthly returns: 4 year exponentially weighted moving average
for( i in 1:cAssets ){
M = cbind( M , as.vector( EMA(x=inception.R[,i],n=Tmean) ) ) #2/(n+1)
}
M = zoo( M , order.by=time(inception.R) )
# Center returns (shift by one observations since M[t,] is rolling mean t-Tmean+1,...,t; otherwise lookahead bias)
inception.R.cent = inception.R;
ZZ = matrix( rep(as.vector( apply( inception.R[1:Tmean, ] , 2 , 'mean' )),Tmean),byrow=T,nrow=Tmean);
inception.R.cent[1:Tmean,] = inception.R[1:Tmean, ] - ZZ;
if( nrow(inception.R)>(Tmean+1) ){
A = M[Tmean:(nrow(inception.R)-1),];
A = zoo( A , order.by = time(inception.R[(Tmean+1):nrow(inception.R), ])) ; #shift dates; otherwise zoo poses problem
inception.R.cent[(Tmean+1):nrow(inception.R), ] = inception.R[(Tmean+1):nrow(inception.R), ] - A}
# Garch estimation
S = c();
for( i in 1:cAssets ){
gout = garchFit(formula ~ garch(1,1), data = inception.R.cent[,i],include.mean = F, cond.dist="QMLE", trace = FALSE )
if( as.vector(gout@fit$coef["alpha1"]) < 0.01 ){
sigmat = rep( sd( as.vector(inception.R.cent[,i])), length(inception.R.cent[,i]) );
}else{
sigmat = gout@sigma.t
}
S = cbind( S , sigmat)
}
S = zoo( S , order.by=time(inception.R.cent) )
# Estimate correlation, coskewness and cokurtosis matrix locally using cleaned innovation series in three year estimation window
selectU = window(inception.R.cent, start = as.Date(from[per]) , end = as.Date(to[per]) )
selectU = selectU/window(S, start = as.Date(from[per]) , end = as.Date(to[per]) );
selectU = clean.boudt2(selectU , alpha = 0.05 )[[1]];
Rcor = cor(selectU)
D = diag( as.vector(tail(S,n=1) ),ncol=cAssets )
sigma = D%*%Rcor%*%D
# we only need mean and conditional covariance matrix of last observation
mu = matrix(tail(M,n=1),ncol=1 ) ;
D = diag( as.vector(as.vector(tail(S,n=1) ) ),ncol=cAssets )
sigma = D%*%Rcor%*%D
in.sample.T = nrow(selectU);
# set volatility of all U to last observation, such that cov(rescaled U)=sigma
selectU = selectU*matrix( rep(as.vector(tail(S,n=1)),in.sample.T ) , ncol = cAssets , byrow = T )
M3 = PerformanceAnalytics:::M3.MM(selectU)
M4 = PerformanceAnalytics:::M4.MM(selectU)
mESfun = function(series){ return( operMES(series,alpha=alpha,2) ) }
if(strategy=="MinRisk_ReturnTarget" | strategy=="MinRiskConc_ReturnTarget"){
mutarget = mean( mu );
print( c("Minimum return requirement is" , mutarget) )
}
if(strategy=="EqualWeight"){
sol1 = rep(1/cAssets,cAssets);
switch( percriskcontribcriterion ,
StdDev = { percriskcontrib = function(w){ cont = Portsd(w,mu=mu,sigma=sigma)[[3]] ; return( cont ) }},
GVaR = {percriskcontrib = function(w){ cont = PortgausVaR(w,alpha=alphariskbudget,mu=mu,sigma=sigma)[[3]] ; return( cont ) }},
GES = {percriskcontrib = function(w){ cont = PortgausES(w,mu=mu,alpha=alphariskbudget,sigma=sigma)[[3]] ; return( cont ) }},
mVaR = {percriskcontrib = function(w){ cont = PortMVaR(w,mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[3]] ; return( cont ) }},
mES = {percriskcontrib = function(w){ cont = operPortMES(w,mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[3]] ; return( cont ) }
}
)
sol2 = percriskcontrib( sol1 )
solution = list( sol1 , sol2 ) ;
}else{
solution = PortfolioOptim( minriskcriterion = "mES" , MinMaxComp = MinMaxComp, percriskcontribcriterion = "mES" ,
mu = mu , sigma = sigma, M3=M3 , M4=M4 , alpha = alpha , alphariskbudget = alphariskbudget ,
lower = lower , upper = upper , Riskupper = Inf , Returnlower= mutarget , RBlower = RBlower, RBupper = RBupper ,
controlDE = controlDE )
solution = list( solution[[1]] , solution[[4]] );
}
out[ per, ] = as.vector( solution[[1]] )
RCout[per, ] = as.vector( solution[[2]] )
}#end loop over the rebalancing periods; indexed by per=1,...,cPeriods
# Output save
rownames(out) = rownames(RCout) = names.input; colnames(out) = colnames(RCout) = names.assets;
EWweights = c( rep(1/cAssets,cAssets) )
EWweights = matrix ( rep(EWweights,cPeriods) , ncol=(cAssets) , byrow = TRUE )
rownames(EWweights) = names.input; colnames(EWweights) = names.assets;
return( list( out, RCout) )
}
clean.boudt2 =
function (R, alpha = 0.01, trim = 0.001)
{
# @author Kris Boudt and Brian Peterson
# Cleaning method as described in
# Boudt, Peterson and Croux. 2009. Estimation and decomposition of downside risk for portfolios with non-normal returns. Journal of Risk.
stopifnot("package:robustbase" %in% search() || require("robustbase",
quietly = TRUE))
R = checkData(R, method = "zoo")
T = dim(R)[1]
date = c(1:T)
N = dim(R)[2]
MCD = covMcd(as.matrix(R), alpha = 1 - alpha)
# mu = as.matrix(MCD$raw.center)
mu = MCD$raw.center
sigma = MCD$raw.cov
invSigma = solve(sigma)
vd2t = c()
cleaneddata = R
outlierdate = c()
for (t in c(1:T)) {
d2t = as.matrix(R[t, ] - mu) %*% invSigma %*% t(as.matrix(R[t,] - mu))
vd2t = c(vd2t, d2t)
}
out = sort(vd2t, index.return = TRUE)
sortvd2t = out$x
sortt = out$ix
empirical.threshold = sortvd2t[floor((1 - alpha) * T)]
T.alpha = floor(T * (1 - alpha)) + 1
cleanedt = sortt[c(T.alpha:T)]
for (t in cleanedt) {
if (vd2t[t] > qchisq(1 - trim, N)) {
cleaneddata[t, ] = sqrt(max(empirical.threshold,
qchisq(1 - trim, N))/vd2t[t]) * R[t, ]
outlierdate = c(outlierdate, date[t])
}
}
return(list(cleaneddata, outlierdate))
}
Ipower = function(power,h)
{
fullprod = 1;
if( (power%%2)==0 ) #even number: number mod is zero
{
pstar = power/2;
for(j in c(1:pstar))
{
fullprod = fullprod*(2*j)
}
I = fullprod*dnorm(h);
for(i in c(1:pstar) )
{
prod = 1;
for(j in c(1:i) )
{
prod = prod*(2*j)
}
I = I + (fullprod/prod)*(h^(2*i))*dnorm(h)
}
}
else{
pstar = (power-1)/2
for(j in c(0:pstar) )
{
fullprod = fullprod*( (2*j)+1 )
}
I = -fullprod*pnorm(h);
for(i in c(0:pstar) )
{
prod = 1;
for(j in c(0:i) )
{
prod = prod*( (2*j) + 1 )
}
I = I + (fullprod/prod)*(h^( (2*i) + 1))*dnorm(h)
}
}
return(I)
}
# Definition of statistics needed to compute Gaussian and modified VaR and ES for the return series of portfolios
# and to compute the contributions to portfolio downside risk, made by the different positions in the portfolio.
#----------------------------------------------------------------------------------------------------------------
m2 = function(w,sigma)
{
return(t(w)%*%sigma%*%w)
}
derm2 = function(w,sigma)
{
return(2*sigma%*%w)
}
m3 = function(w,M3)
{
return(t(w)%*%M3%*%(w%x%w))
}
derm3 = function(w,M3)
{
return(3*M3%*%(w%x%w))
}
m4 = function(w,M4)
{
return(t(w)%*%M4%*%(w%x%w%x%w))
}
derm4 = function(w,M4)
{
return(4*M4%*%(w%x%w%x%w))
}
StdDevfun = function(w,sigma){ return( sqrt( t(w)%*%sigma%*%w )) }
GVaRfun = function(w,alpha,mu,sigma){ return (- (t(w)%*%mu) - qnorm(alpha)*sqrt( t(w)%*%sigma%*%w ) ) }
mVaRfun = function(w,alpha,mu,sigma,M3,M4){
pm4 = t(w)%*%M4%*%(w%x%w%x%w) ; pm3 = t(w)%*%M3%*%(w%x%w) ; pm2 = t(w)%*%sigma%*%w ;
skew = pm3 / pm2^(3/2);
exkurt = pm4 / pm2^(2) - 3; z = qnorm(alpha);
h = z + (1/6)*(z^2 -1)*skew
h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2;
return (- (t(w)%*%mu) - h*sqrt( pm2 ) ) }
resmVaRfun = function(w,alpha,mu,sigma,ressigma,M3,M4){
pm4 = t(w)%*%M4%*%(w%x%w%x%w) ; pm3 = t(w)%*%M3%*%(w%x%w) ; pm2 = t(w)%*%sigma%*%w ; respm2 = t(w)%*%resSigma%*%w ;
skew = pm3 / respm2^(3/2);
exkurt = pm4 / respm2^(2) - 3; z = qnorm(alpha);
h = z + (1/6)*(z^2 -1)*skew
h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2;
return (- (t(w)%*%mu) - h*sqrt( pm2 ) ) }
GESfun = function(w,alpha,mu,sigma,M3,M4){
return (- (t(w)%*%mu) + dnorm(qnorm(alpha))*sqrt(t(w)%*%sigma%*%w)/alpha ) }
operMESfun = function(w,alpha,mu,sigma,M3,M4){
pm4 = t(w)%*%M4%*%(w%x%w%x%w) ; pm3 = t(w)%*%M3%*%(w%x%w) ; pm2 = t(w)%*%sigma%*%w ;
skew = pm3 / pm2^(3/2);
exkurt = pm4 / pm2^(2) - 3; z = qnorm(alpha);
h = z + (1/6)*(z^2 -1)*skew
h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2;
E = dnorm(h)
E = E + (1/24)*( Ipower(4,h) - 6*Ipower(2,h) + 3*dnorm(h) )*exkurt
E = E + (1/6)*( Ipower(3,h) - 3*Ipower(1,h) )*skew;
E = E + (1/72)*( Ipower(6,h) -15*Ipower(4,h)+ 45*Ipower(2,h) - 15*dnorm(h) )*(skew^2)
E = E/alpha
return (- (t(w)%*%mu) - sqrt(pm2)*min(-E,h) ) }
precision = 4;
Portmean = function(w,mu,precision=4)
{
return( list( round( t(w)%*%mu , precision) , round ( as.vector(w)*as.vector(mu) , precision ) , round( as.vector(w)*as.vector(mu)/t(w)%*%mu) , precision) )
}
Portsd = function(w,sigma,precision=4)
{
pm2 = m2(w,sigma)
dpm2 = derm2(w,sigma)
dersd = (0.5*as.vector(dpm2))/sqrt(pm2);
contrib = dersd*as.vector(w)
return(list( round( sqrt(pm2) , precision ) , round( contrib , precision ) , round ( contrib/sqrt(pm2) , precision) ))
}
PortgausVaR = function(alpha,w,mu,sigma,precision=4){
location = t(w)%*%mu
pm2 = m2(w,sigma)
dpm2 = derm2(w,sigma)
VaR = - location - qnorm(alpha)*sqrt(pm2)
derVaR = - as.vector(mu)- qnorm(alpha)*(0.5*as.vector(dpm2))/sqrt(pm2);
contrib = derVaR*as.vector(w)
return(list( round( VaR , precision ) , round ( contrib , precision ) , round( contrib/VaR , precision) ))
}
PortgausES = function(alpha,w,mu,sigma,precision=4){
location = t(w)%*%mu
pm2 = m2(w,sigma)
dpm2 = derm2(w,sigma)
ES = - location + dnorm(qnorm(alpha))*sqrt(pm2)/alpha
derES = - as.vector(mu) + (1/alpha)*dnorm(qnorm(alpha))*(0.5*as.vector(dpm2))/sqrt(pm2);
contrib = as.vector(w)*derES;
return(list( round( ES , precision ) , round( contrib , precision) , round( contrib/ES , precision) ))
}
PortSkew = function(w,sigma,M3)
{
pm2 = m2(w,sigma)
pm3 = m3(w,M3)
skew = pm3 / pm2^(3/2);
return( skew )
}
PortKurt = function(w,sigma,M4)
{
pm2 = m2(w,sigma)
pm4 = m4(w,M4)
kurt = pm4 / pm2^(2) ;
return( kurt )
}
PortMVaR = function(alpha,w,mu,sigma,M3,M4,precision=4)
{
z = qnorm(alpha)
location = t(w)%*%mu
pm2 = m2(w,sigma)
dpm2 = as.vector( derm2(w,sigma) )
pm3 = m3(w,M3)
dpm3 = as.vector( derm3(w,M3) )
pm4 = m4(w,M4)
dpm4 = as.vector( derm4(w,M4) )
skew = pm3 / pm2^(3/2);
exkurt = pm4 / pm2^(2) - 3;
derskew = ( 2*(pm2^(3/2))*dpm3 - 3*pm3*sqrt(pm2)*dpm2 )/(2*pm2^3)
derexkurt = ( (pm2)*dpm4 - 2*pm4*dpm2 )/(pm2^3)
h = z + (1/6)*(z^2 -1)*skew
h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2;
MVaR = - location - h*sqrt(pm2)
derGausVaR = - as.vector(mu)- qnorm(alpha)*(0.5*as.vector(dpm2))/sqrt(pm2);
derMVaR = derGausVaR + (0.5*dpm2/sqrt(pm2))*( -(1/6)*(z^2 -1)*skew - (1/24)*(z^3 - 3*z)*exkurt + (1/36)*(2*z^3 - 5*z)*skew^2 )
derMVaR = derMVaR + sqrt(pm2)*( -(1/6)*(z^2 -1)*derskew - (1/24)*(z^3 - 3*z)*derexkurt + (1/36)*(2*z^3 - 5*z)*2*skew*derskew )
contrib = as.vector(w)*as.vector(derMVaR)
return(list( round( MVaR , precision) , round( contrib , precision ), round (contrib/MVaR , precision ) ) )
}
derIpower = function(power,h)
{
fullprod = 1;
if( (power%%2)==0 ) #even number: number mod is zero
{
pstar = power/2;
for(j in c(1:pstar))
{
fullprod = fullprod*(2*j)
}
I = -fullprod*h*dnorm(h);
for(i in c(1:pstar) )
{
prod = 1;
for(j in c(1:i) )
{
prod = prod*(2*j)
}
I = I + (fullprod/prod)*(h^(2*i-1))*(2*i-h^2)*dnorm(h)
}
}else{
pstar = (power-1)/2
for(j in c(0:pstar) )
{
fullprod = fullprod*( (2*j)+1 )
}
I = -fullprod*dnorm(h);
for(i in c(0:pstar) )
{
prod = 1;
for(j in c(0:i) )
{
prod = prod*( (2*j) + 1 )
}
I = I + (fullprod/prod)*(h^(2*i)*(2*i+1-h^2) )*dnorm(h)
}
}
return(I)
}
PortMES = function(alpha,w,mu,sigma,M3,M4,precision=4)
{
z = qnorm(alpha)
location = t(w)%*%mu
pm2 = m2(w,sigma)
dpm2 = as.vector( derm2(w,sigma) )
pm3 = m3(w,M3)
dpm3 = as.vector( derm3(w,M3) )
pm4 = m4(w,M4)
dpm4 = as.vector( derm4(w,M4) )
skew = pm3 / pm2^(3/2);
exkurt = pm4 / pm2^(2) - 3;
derskew = ( 2*(pm2^(3/2))*dpm3 - 3*pm3*sqrt(pm2)*dpm2 )/(2*pm2^3)
derexkurt = ( (pm2)*dpm4 - 2*pm4*dpm2 )/(pm2^3)
h = z + (1/6)*(z^2 -1)*skew
h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2;
derh = (1/6)*(z^2 -1)*derskew + (1/24)*(z^3 - 3*z)*derexkurt - (1/18)*(2*z^3 - 5*z)*skew*derskew
E = dnorm(h)
E = E + (1/24)*( Ipower(4,h) - 6*Ipower(2,h) + 3*dnorm(h) )*exkurt
E = E + (1/6)*( Ipower(3,h) - 3*Ipower(1,h) )*skew;
E = E + (1/72)*( Ipower(6,h) -15*Ipower(4,h)+ 45*Ipower(2,h) - 15*dnorm(h) )*(skew^2)
E = E/alpha
MES = - location + sqrt(pm2)*E
derMES = -mu + 0.5*(dpm2/sqrt(pm2))*E
derE = (1/24)*( Ipower(4,h) - 6*Ipower(2,h) + 3*dnorm(h) )*derexkurt
derE = derE + (1/6)*( Ipower(3,h) - 3*Ipower(1,h) )*derskew
derE = derE + (1/36)*( Ipower(6,h) -15*Ipower(4,h)+ 45*Ipower(2,h) - 15*dnorm(h) )*skew*derskew
X = -h*dnorm(h) + (1/24)*( derIpower(4,h) - 6*derIpower(2,h) -3*h*dnorm(h) )*exkurt
X = X + (1/6)*( derIpower(3,h) - 3*derIpower(1,h) )*skew
X = X + (1/72)*( derIpower(6,h) - 15*derIpower(4,h) + 45*derIpower(2,h) + 15*h*dnorm(h) )*skew^2
derE = derE+derh*X # X is a scalar
derE = derE/alpha
derMES = derMES + sqrt(pm2)*derE
contrib = as.vector(w)*as.vector(derMES)
return(list( round( MES , precision ) , round( contrib , precision ), round( contrib/MES, precision )) )
}
operPortMES = function(alpha,w,mu,sigma,M3,M4,precision=4)
{
z = qnorm(alpha)
location = t(w)%*%mu
pm2 = m2(w,sigma)
dpm2 = as.vector( derm2(w,sigma) )
pm3 = m3(w,M3)
dpm3 = as.vector( derm3(w,M3) )
pm4 = m4(w,M4)
dpm4 = as.vector( derm4(w,M4) )
skew = pm3 / pm2^(3/2);
exkurt = pm4 / pm2^(2) - 3;
derskew = ( 2*(pm2^(3/2))*dpm3 - 3*pm3*sqrt(pm2)*dpm2 )/(2*pm2^3)
derexkurt = ( (pm2)*dpm4 - 2*pm4*dpm2 )/(pm2^3)
h = z + (1/6)*(z^2 -1)*skew
h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2;
I1 = Ipower(1,h); I2 = Ipower(2,h); I3 = Ipower(3,h); I4 = Ipower(4,h); I6 = Ipower(6,h);
derh = (1/6)*(z^2 -1)*derskew + (1/24)*(z^3 - 3*z)*derexkurt - (1/18)*(2*z^3 - 5*z)*skew*derskew
E = dnorm(h)
E = E + (1/24)*( I4 - 6*I2 + 3*dnorm(h) )*exkurt
E = E + (1/6)*( I3 - 3*I1 )*skew;
E = E + (1/72)*( I6 -15*I4+ 45*I2 - 15*dnorm(h) )*(skew^2)
E = E/alpha
MES = - location - sqrt(pm2)*min(-E,h)
if(-E<=h){
derMES = -mu + 0.5*(dpm2/sqrt(pm2))*E
derE = (1/24)*( I4 - 6*I2 + 3*dnorm(h) )*derexkurt
derE = derE + (1/6)*( I3 - 3*I1 )*derskew
derE = derE + (1/36)*( I6 -15*I4 + 45*I2 - 15*dnorm(h) )*skew*derskew
X = -h*dnorm(h) + (1/24)*( derIpower(4,h) - 6*derIpower(2,h) -3*h*dnorm(h) )*exkurt
X = X + (1/6)*( derIpower(3,h) - 3*derIpower(1,h) )*skew
X = X + (1/72)*( derIpower(6,h) - 15*derIpower(4,h) + 45*derIpower(2,h) + 15*h*dnorm(h) )*skew^2
derE = derE+derh*X # X is a scalar
derE = derE/alpha
derMES = derMES + sqrt(pm2)*derE }else{
derMES = -mu - 0.5*(dpm2/sqrt(pm2))*h - sqrt(pm2)*derh ; }
contrib = as.vector(w)*as.vector(derMES)
return(list( round( MES, precision) , round( contrib , precision ) , round(contrib/MES,precision) ) )
}
centeredmoment = function(series,power)
{
location = mean(series);
out = sum( (series-location)^power )/length(series);
return(out);
}
operMES = function(series,alpha,r)
{
z = qnorm(alpha)
location = mean(series);
m2 = centeredmoment(series,2)
m3 = centeredmoment(series,3)
m4 = centeredmoment(series,4)
skew = m3 / m2^(3/2);
exkurt = m4 / m2^(2) - 3;
h = z + (1/6)*(z^2 -1)*skew
if(r==2){ h = h + (1/24)*(z^3 - 3*z)*exkurt - (1/36)*(2*z^3 - 5*z)*skew^2};
MES = dnorm(h)
MES = MES + (1/24)*( Ipower(4,h) - 6*Ipower(2,h) + 3*dnorm(h) )*exkurt
MES = MES + (1/6)*( Ipower(3,h) - 3*Ipower(1,h) )*skew;
MES = MES + (1/72)*( Ipower(6,h) -15*Ipower(4,h)+ 45*Ipower(2,h) - 15*dnorm(h) )*(skew^2)
MES = - location - (sqrt(m2))*min( -MES/alpha , h )
return(MES)
}
TwoVarPlot <- function(xvar, y1var, y2var, labels, noincs = 5,marks=c(1,2), legpos, leglabs, title)
{
# https://stat.ethz.ch/pipermail/r-help/2000-September/008182.html
# plots an x y1 y2 using left and right axes for the different y's
# rescales y2 to fit in the same space as y1
# noincs - no of divisions in the axis labels
# marks - type of marker for each y
# legpos - legend position
# leglabs - legend labels
# rescale to fit on same axis
scaledy2var <- (y2var - min(y2var)) / (max(y2var) - min(y2var))
scaledy2var <- (scaledy2var * (max(y1var) - min(y1var))) + min(y1var)
# plot it up and add the points
plot(xvar, y1var, xlab=labels[1], ylab="", axes=F, pch=marks[1],main=title,type="l")
lines(xvar, scaledy2var, lty=3 )
# make up some labels and positions
y1labs <- round(seq(min(y1var), max(y1var), length=noincs),2)
# convert these to the y2 axis scaling
y2labs <- (y1labs - min(y1var)) / (max(y1var) - min(y1var))
y2labs <- (y2labs * (max(y2var) - min(y2var))) + min(y2var)
y2labs <- round(y2labs, 2)
axis(1)
axis(2, at=y1labs, labels=y1labs)
axis(4, at=y1labs, labels=y2labs)
mtext(labels[3], side=4, line=2)
mtext(labels[2], side=2, line=2)
box()
legend( legend=leglabs, lty = c(1,3), bty="o", x=legpos)
}