forked from reeucq/advanced-data-structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArrayBinaryTree.java
203 lines (186 loc) · 7.22 KB
/
ArrayBinaryTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/**
* Tree is a data structure that is used to store data in a hierarchical manner.
* It is a non-linear data structure.
* It is a collection of nodes connected by edges.
* The topmost node is called the root of the tree.
* The nodes that are connected to the root node are called the children of the root node.
* The nodes that are connected to the children nodes are called the children of the children nodes, and so on.
* The nodes that do not have any children are called leaf nodes.
* The nodes that are connected to the same parent node are called siblings.
* The height of a tree is the length of the longest path from the root node to a leaf node.
* The depth of a node is the length of the path from the root node to that node.
* The degree of a node is the number of children of that node. The degree of leaf nodes is 0 and the degree of the root node is the maximum.
* The level of a node is the depth of the node + 1.
* This class implements a binary tree using an array.
*/
import java.util.Scanner;
import java.util.Arrays;
public class ArrayBinaryTree<T> {
/**
* Data Members
*/
T[] tree; // array to store the elements of the tree
int h; // height of the tree
/** Constructor */
@SuppressWarnings("unchecked")
public ArrayBinaryTree(int height) {
if(height < 0)
throw new IllegalArgumentException("Height of the tree should be greater than or equal to 0");
h = height;
tree = (T[]) new Object[(int) Math.pow(2,h)-1];
for(int i = 0; i < tree.length; i++)
tree[i] = null;
}
/**
* build(int i)
* This function is used to build the tree.
* It is a recursive function that builds the tree in a top-down manner.
* They are called with the index of the root node of the tree.
* @param i the index of the root node of the tree
*/
@SuppressWarnings("unchecked")
public void build(int i) {
Scanner sc = new Scanner(System.in);
if(i == 0) {
System.out.println("Enter the root node: ");
} else if (i % 2 == 1) {
System.out.println("Enter the left child of "+tree[(i-1)/2]+": ");
} else {
System.out.println("Enter the right child of "+tree[(int) Math.floor((i-1)/2)]+": ");
}
tree[i] = (T) sc.next();
System.out.println("Does "+tree[i]+" has a left child? (y/n)");
if((sc.next().toLowerCase().charAt(0) == 'y') && (2*(i+1)-1 < tree.length)) {
build(2*(i+1)-1);
}
System.out.println("Does "+tree[i]+" has a right child? (y/n)");
if((sc.next().toLowerCase().charAt(0) == 'y') && (2*(i+1) < tree.length)) {
build(2*(i+1));
}
}
/** @return true iff the tree is empty */
public boolean isEmpty() { return tree[0] == null; }
/** @return size the number of nodes in the binary tree */
public int size() {
int size = 0;
for(int i = 0; i < tree.length; i++) {
if(tree[i] != null)
size++;
}
return size;
}
/**
* Pre Order Traversal (VLR)
* This function is used to traverse the tree in pre-order.
* In pre-order traversal, the root node is visited first, then the left child, and then the right child.
* @param i the index of the root node of the tree
*/
public void preOrder(int i) {
if(i < tree.length && tree[i] != null) {
System.out.print(tree[i]+" ");
preOrder(2*(i+1)-1);
preOrder(2*(i+1));
}
}
/**
* In Order Traversal (LVR)
* This function is used to traverse the tree in in-order.
* In in-order traversal, the left child is visited first, then the root node, and then the right child.
* @param i the index of the root node of the tree
*/
public void inOrder(int i) {
if(i < tree.length && tree[i] != null) {
inOrder(2*(i+1)-1);
System.out.print(tree[i]+" ");
inOrder(2*(i+1));
}
}
/**
* Post Order Traversal (LRV)
* This function is used to traverse the tree in post-order.
* In post-order traversal, the left child is visited first, then the right child, and then the root node.
* @param i the index of the root node of the tree
*/
public void postOrder(int i) {
if(i < tree.length && tree[i] != null) {
postOrder(2*(i+1)-1);
postOrder(2*(i+1));
System.out.print(tree[i]+" ");
}
}
/**
* Level Order Traversal
* This function is used to traverse the tree in level-order.
* In level-order traversal, the nodes are visited level by level from left to right.
*/
public void levelOrder() {
if(isEmpty()) {
System.out.println("Tree is empty");
return;
}
ArrayQueue<Integer> queue = new ArrayQueue<>(size());
queue.insert(0);
while(!queue.isEmpty()) {
int i = queue.remove();
System.out.print(tree[i]+" ");
if(2*(i+1)-1 < tree.length && tree[2*(i+1)-1] != null)
queue.insert(2*(i+1)-1);
if(2*(i+1) < tree.length && tree[2*(i+1)] != null)
queue.insert(2*(i+1));
}
}
/**
* Level Order Traversal Easy
* This function is used to traverse the tree in level-order.
* In level-order traversal, the nodes are visited level by level from left to right.
* Not preferred because complexity is O(n) and it is not efficient.
*/
public void levelOrderEasy() {
for(int i = 0; i < tree.length; i++) {
if(tree[i] != null)
System.out.print(tree[i]+" ");
}
}
/** @return height of the tree */
public int height() { return h; }
/** @return index of the element that's being searched */
public int search(T element) {
for(int i = 0; i < tree.length; i++) {
if(tree[i] != null && tree[i].equals(element))
return i;
}
return -1;
}
// Main Method
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the height of the tree: ");
int h = sc.nextInt();
ArrayBinaryTree<String> tree = new ArrayBinaryTree<>(h);
tree.build(0);
System.out.println(Arrays.toString(tree.tree));
System.out.println("Pre Order Traversal: ");
tree.preOrder(0);
System.out.println();
System.out.println("In Order Traversal: ");
tree.inOrder(0);
System.out.println();
System.out.println("Post Order Traversal: ");
tree.postOrder(0);
System.out.println();
System.out.println("Level Order Traversal: ");
tree.levelOrder();
System.out.println();
System.out.println("Level Order Traversal Easy: ");
tree.levelOrderEasy();
System.out.println();
System.out.println("Height of the tree: "+tree.height());
System.out.println("Enter the element to search: ");
String element = sc.next();
int index = tree.search(element);
if(index != -1)
System.out.println(element+" is found at index "+index);
else
System.out.println(element+" is not found");
}
}