-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathops.py
295 lines (235 loc) · 11.8 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import division
import tensorflow as tf
import tensorflow.contrib as tf_contrib
def conv2d(x, w, padding='SAME', strides=[1, 1, 1, 1], keep_prob=1.0, verbose=True):
"""
:param x: input tensor of shape (B,H,W,C)
:param w: kernel weights of shape [kernel size, kernel size, incoming_feature_maps, filters]
:param padding: 'SAME' to preserve feature maps dimension, look tf docs for other options
:param strides: strides along every dimension of the input tensor. If all 1 then no downsampling due to striding
:param keep_prob: must equal 1-p where p is the dropout probability
:param verbose: True to print conv layer settings False to supress
:return: out: output tensor passed through dropout
"""
x_shape = x.get_shape()
w_shape = w.get_shape().as_list()
out = tf.nn.conv2d(x, w, strides=strides, padding=padding)
out_shape = out.get_shape()
if verbose:
print(' Normal_2D_Convolution with s =', 1, ' k =', w_shape[0], ' p = SAME')
print(' W:', w_shape)
print(' in:', x_shape)
print(' out:', out_shape)
return tf.nn.dropout(out, keep_prob=keep_prob)
def dilated_conv2d(x, w, dilation_rate, keep_prob=1.0, verbose=True):
"""G
This op assumes static shapes H,W known in advance
:param x: input tensor of shape (B,H,W,C)
:param w: kernel weights of shape [kernel size, kernel size, channels, features]
:param dilation_rate: dilation rate , if r = 1 the convolution acts as a classic convolution
:param keep_prob: must equal 1-p where p is the dropout probability
:param verbose: True to print conv layer settings False to supress
:return: out: output tensor passed through dropout
"""
x_shape = x.get_shape()
w_shape = w.get_shape()
out = tf.nn.convolution(x, w, dilation_rate=[dilation_rate, dilation_rate], padding='SAME')
out_shape = out.get_shape()
if verbose:
print('Dilated_2D_Convolution with s =', 1, 'r =', dilation_rate, ' k =', w_shape[0], ' p = SAME',
' dropout rate = ', 1 - keep_prob)
print(' W:', w_shape)
print(' in:', x_shape)
print(' out:', out_shape)
return tf.nn.dropout(out, keep_prob=1.0)
def transposed_conv2d(x, w, stride, keep_prob=1.0, verbose=True):
"""
This op does not assume static shapes H,W known in advance
:param x: input tensor of shape (B,H,W,C)
:param w: kernel weights of shape [height, width, output_channels, in_channels] !SOS at the order of shape elements!
:param stride: stride is the factor by which the output resolution will be increased.
typically stride=2 will lead to 2x upsamples
:param keep_prob: must equal 1-p where p is the dropout probability
:param verbose: True to print conv layer settings False to supress
:return: out: output tensor passed through dropout
"""
x_shape = tf.shape(x)
w_shape = tf.shape(w)
output_shape = tf.stack([x_shape[0], x_shape[1] * stride, x_shape[2] * stride, x_shape[3] // 2])
out = tf.nn.conv2d_transpose(x, w, output_shape, strides=[1, stride, stride, 1], padding='SAME')
out_shape = tf.shape(out)
if verbose:
print(' Transposed_Convolution with s =', stride, ' k =', w_shape[0], ' p = SAME')
print(' W:', w_shape[0])
print(' in:', x_shape)
print(' out:', out_shape)
return tf.nn.dropout(out, keep_prob=keep_prob)
def max_pool(x, n, verbose=False):
"""
:param x: input tensor of shape (B,H,W,C)
:param n: the pooling kernel size
:param verbose: True to print conv layer settings False to supress
:return: out: out_H = ceil[ (H-n) / s ] + 1, out_W = ceil[ (W-n) / s ]
"""
x_shape = x.get_shape()
out = tf.nn.max_pool(x, ksize=[1, n, n, 1], strides=[1, n, n, 1], padding='SAME')
out_shape = out.get_shape()
if verbose:
print(' in:', x_shape)
print(' Max Pooling with s =', n, ' k =', n, ' p = SAME')
print(' out:', out_shape)
return out
def crop_and_concat(x1, x2):
"""
crops tensor x1 to be of equal spatial dimensions as x2 and concats them along the featurmap axis
:param x1: tensor (B,H1,W1,C1)
:param x2: tensor (B,H2,W2,C2)
:return: concatenated tensor of shape (B,H2,W2,C1+C2)
"""
x1_shape = tf.shape(x1)
x2_shape = tf.shape(x2)
# print('in crop concat')
# print(x1.shape)
# print(x2.shape)
# offsets for the top left corner of the crop
offsets = [0, (x1_shape[1] - x2_shape[1]) // 2, (x1_shape[2] - x2_shape[2]) // 2, 0]
size = [-1, x2_shape[1], x2_shape[2], -1]
x1_crop = tf.slice(x1, offsets, size)
out = tf.concat([x1_crop, x2], 3)
# print(out.shape)
return out
def resolve_shape(tensor, rank=None, scope=None):
"""Fully resolves the shape of a Tensor.
Utility function from https://github.com/tensorflow/models/tree/master/research/deeplab
Use as much as possible the shape components already known during graph
creation and resolve the remaining ones during runtime.
Args:
tensor: Input tensor whose shape we query.
rank: The rank of the tensor, provided that we know it.
scope: Optional name scope.
Returns:
shape: The full shape of the tensor.
"""
with tf.name_scope(scope, 'resolve_shape', [tensor]):
if rank is not None:
shape = tensor.get_shape().with_rank(rank).as_list()
else:
shape = tensor.get_shape().as_list()
if None in shape:
shape_dynamic = tf.shape(tensor)
for i in range(len(shape)):
if shape[i] is None:
shape[i] = shape_dynamic[i]
return shape
def bias_variable(name, shape, seed=1):
var = tf.get_variable(name, shape,
initializer=tf.contrib.layers.xavier_initializer(uniform=False, seed=seed), dtype=tf.float32)
return var
def weight_variable(name, shape, seed=1):
var = tf.get_variable(name, shape=shape,
initializer=tf.contrib.layers.xavier_initializer(uniform=False, seed=seed), dtype=tf.float32)
return var
def res_block(x, num_feature_maps, prev_num_channels=None, filter_size=3, dilation_rate=2,
bn_train=True, norm_type='bn', keep_prob=1.0,
do_dropout_in_last_encoder_layer=False, verbose=False):
"""
adds a residual block of architecture: x ------> conv-bn-relu --> Conv-bn -------->(+) --> relu
| |
---------------conv-bn-relu-------------
as described by the original Resnet paper. Note: there are alternative designs not used here
:param x: input tensor of shape (B,H,W,C)
:param num_feature_maps: the number of feature maps in each conv layer of the residual block
:param prev_num_channels: the number of feature maps in the input tensor
:param filter_size: the filter size of each conv filter
:param dilation_rate: dilation rate of each convolution layer if using dilated convolution
:param bn_train: bn switch, if True then updates moving mean/var and uses current batch statistics for normalization
if False then does not update moving mean/var and uses them for normalization
:param norm_type: 'bn', 'in', 'nn', 'gn'
:param keep_prob: 1-p where p is the dropout propability for using dropout after the convolution
:param do_dropout_in_last_encoder_layer: if True adds dropout with keep_prob only at after the last conv layer
:param verbose: if True prints information on the conv layers input, output, kernel, dilation etc...
:return: output: tensor output of residual block
"""
if not (norm_type == 'bn' or norm_type == 'gn'):
raise ValueError('norm_type [{}] is invalide use bn or gn'.format(norm_type))
if prev_num_channels is None:
prev_num_channels = x.shape[3]
if verbose:
print('In Res-block')
print('prev_num_channels', prev_num_channels)
if do_dropout_in_last_encoder_layer and verbose:
print('Doing Dropout here with keep_prob', keep_prob)
else:
keep_prob = 1.0
# conv1
b_1 = bias_variable("b1", [num_feature_maps])
w_1 = weight_variable("w1", [filter_size, filter_size, prev_num_channels, num_feature_maps])
conv_1 = conv2d(x, w_1, verbose=verbose) + b_1
if norm_type == 'bn':
# bn - relu
bn_1 = tf.contrib.layers.batch_norm(inputs=conv_1, decay=0.9, is_training=bn_train, center=True, scale=True,
activation_fn=tf.nn.relu, updates_collections=None, fused=True)
elif norm_type == 'gn':
# gn -relu
bn_1 = group_norm(conv_1, g=32, scope='group-norm-1')
bn_1 = tf.nn.relu(bn_1)
# conv2
b_2 = bias_variable("b2", [num_feature_maps])
w_2 = weight_variable("w2", [filter_size, filter_size, num_feature_maps, num_feature_maps])
conv_2 = conv2d(bn_1, w_2, verbose=verbose) + b_2
if norm_type == 'bn':
# bn
bn_2 = tf.contrib.layers.batch_norm(inputs=conv_2, decay=0.9, is_training=bn_train, center=True, scale=True,
activation_fn=None, updates_collections=None, fused=True)
elif norm_type == 'gn':
# gn
bn_2 = group_norm(conv_2, g=32, scope='group-norm-2')
# conv3
# this conv layer makes the feature maps of x(input) equal to the number
# of feature maps of bn_2(i.e the output of the second conv of the res block
# if the x has the same number of feature maps as bn_2 then this conv layer is
# skipped
if prev_num_channels != num_feature_maps:
b_s = bias_variable("bs", [num_feature_maps])
w_s = weight_variable("ws", [filter_size, filter_size, prev_num_channels, num_feature_maps])
shortcut = conv2d(x, w_s, verbose=verbose) + b_s
if norm_type == 'bn':
shortcut = tf.contrib.layers.batch_norm(inputs=shortcut, decay=0.9, is_training=bn_train, center=True,
scale=True, activation_fn=None, updates_collections=None,
fused=True)
elif norm_type =='gn':
shortcut = group_norm(shortcut, g=32, scope='group-norm-s')
else:
shortcut = x
output = tf.nn.relu(shortcut + bn_2)
return output
# Normalization layers
def batch_norm(x, is_training=False, scope='batch_norm'):
return tf_contrib.layers.batch_norm(x,
decay=0.9, epsilon=1e-05,
center=True, scale=True, renorm=True, updates_collections=None,
is_training=is_training, scope=scope)
def instance_norm(x, scope='instance_norm'):
return tf_contrib.layers.instance_norm(x,
epsilon=1e-05,
center=True, scale=True,
scope=scope)
def layer_norm(x, scope='layer_norm'):
return tf_contrib.layers.layer_norm(x,
center=True, scale=True,
scope=scope)
def group_norm(x, g=32, eps=1e-5, scope='group_norm'):
with tf.variable_scope(scope):
x_shape = tf.shape(x)
n = x_shape[0]
h = x_shape[1]
w = x_shape[2]
c = x.get_shape().as_list()[3]
g = tf.minimum(g, c)
x = tf.reshape(x, [n, h, w, g, c // g])
mean, var = tf.nn.moments(x, [1, 2, 4], keep_dims=True)
x = (x - mean) / tf.sqrt(var + eps)
gamma = tf.get_variable('gamma', [1, 1, 1, c], initializer=tf.constant_initializer(1.0), trainable=True)
beta = tf.get_variable('beta', [1, 1, 1, c], initializer=tf.constant_initializer(0.0), trainable=True)
x = tf.reshape(x, [n, h, w, c]) * gamma + beta
return x