-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrange_Detection.py
254 lines (212 loc) · 9.54 KB
/
Orange_Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import cv2 as cv
from matplotlib import pyplot as plt
import numpy as np
import math
import time
import os
import cv2 as cv
try:
sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages')
except:
pass
hist_size = [255]
hist_range = [0,256]
dataset = []
path = r'C:\Users\rajsh\Desktop\GMM\Training Set\Orange2'
vid = cv.VideoCapture("detectbuoy.avi")
for i in os.listdir(path):
dataset.append(i)
green_data = 29
orange_data = 118
yellow = 138
def GaussianEquation(sigma, x, mean):
equation = (1/(sigma*math.sqrt(2*math.pi)))*np.exp(-0.5*(x-mean)**2/sigma**2)
return equation
def AverageHistogram():
mean_b = []
mean_g = []
mean_r = []
std_dev_b = []
std_dev_g = []
std_dev_r = []
histogram_r = np.zeros((255,1))
histogram_g = np.zeros((255,1))
histogram_b = np.zeros((255,1))
# Iterate for no of green buoy images
for i in range(0,green_data):
string_path = path+"\orange"+str(i)+".jpg"
img = cv.imread(string_path)
color = ("b","g","r")
# New Mean Calculation
mask= np.zeros((img.shape[0],img.shape[0],3), np.uint8)
coordinates = np.indices((img.shape[0], img.shape[0]))
coordinates = coordinates.reshape(2, -1)
x , y=coordinates[0] , coordinates[1]
indices=np.where(img[x,y]!=[0,0,0])
xnew,ynew=x[indices[0]],y[indices[0]]
mask[xnew,ynew]=img[xnew,ynew]
#cv.imshow("e",mask)
pixels=img[xnew,ynew]
mean=np.sum(pixels, axis=0) / len(pixels)
stds=[np.std(pixels[:,0]),np.std(pixels[:,1]),np.std(pixels[:,2])]
for j,c in enumerate(color):
if c == "b":
temp_b = cv.calcHist([img],[j],None,hist_size,hist_range, accumulate = 1)
histogram_b = np.column_stack((histogram_b, temp_b))
mean_b.append(mean[0])
std_dev_b.append(stds[0])
if c == "g":
temp_g = cv.calcHist([img],[j],None,hist_size,hist_range, accumulate = 1)
histogram_g = np.column_stack((histogram_g, temp_g))
mean_g.append(mean[1])
std_dev_g.append(stds[1])
if c == "r":
temp_r = cv.calcHist([img],[j],None,hist_size,hist_range, accumulate = 1)
histogram_r = np.column_stack((histogram_r, temp_r))
mean_r.append(mean[2])
std_dev_r.append(stds[2])
histogram_avg_b = np.sum(histogram_b, axis=1) / (green_data)
histogram_avg_g = np.sum(histogram_g, axis=1) / (green_data)
histogram_avg_r = np.sum(histogram_r, axis=1) / (green_data)
#Uncomment to plot histograms
#plt.subplot(3,1,1)
#plt.plot(histogram_avg_b, color = "b")
#plt.subplot(3,1,2)
#plt.plot(histogram_avg_g, color = "g")
#plt.subplot(3,1,3)
#plt.plot(histogram_avg_r, color = "r")
#plt.show()
return mean_r, mean_g, mean_b, std_dev_r, std_dev_g, std_dev_b
def EM():
K = 5
datapoint_b = []
datapoint_g = []
datapoint_r = []
a=[]
for i in range(0, green_data):
string_path = path+"\orange"+str(i)+".jpg"
img = cv.imread(string_path)
blue_chan_img = img[:,:,0]
green_chan_img = img[:,:,1]
red_chan_img = img[:,:,2]
for i in range(0, img.shape[0]):
for j in range(0, img.shape[0]):
a=img[i,j]
if a[0]!=0 and a[1]!=0 and a[2]!=0:
datapoint_b.append(blue_chan_img[i,j])
datapoint_g.append(green_chan_img[i,j])
datapoint_r.append(red_chan_img[i,j])
#intital estimates
mean_b_init = 115
mean_g_init = 240
mean_r_init = 210
std_dev_b_init = 30
std_dev_g_init = 30
std_dev_r_init = 30
iterations = 0
while(iterations <=10):
responsibility_1 = []
responsibility_2 = []
responsibility_3 = []
probability_dist_1 = []
probability_dist_2 = []
probability_dist_3 = []
pi_k_1 = []
pi_k_2 = []
pi_k_3 = []
#perform e and m for each datapoint
for i in range(len(datapoint_b)):
#calculate probabilty at that pixel
probability_1 = GaussianEquation(std_dev_b_init, datapoint_b[i], mean_b_init)
probability_2 = GaussianEquation(std_dev_g_init, datapoint_g[i], mean_g_init)
probability_3 = GaussianEquation(std_dev_r_init, datapoint_r[i], mean_r_init)
#gaussian of 3 channels
probability_dist_1.append(probability_1)
probability_dist_2.append(probability_2)
probability_dist_3.append(probability_3)
temp_pi_1 = probability_1/(probability_1 + probability_2 + probability_3)
temp_pi_2 = probability_2/(probability_1 + probability_2 + probability_3)
temp_pi_3 = probability_3/(probability_1 + probability_2 + probability_3)
pi_k_1.append(temp_pi_1)
pi_k_2.append(temp_pi_2)
pi_k_3.append(temp_pi_3)
#formula for calculating new mean from pdf
mean_b_init = np.sum(np.array(pi_k_1)*np.array(datapoint_b))/np.sum(np.array(pi_k_1))
mean_g_init = np.sum(np.array(pi_k_2)*np.array(datapoint_g))/np.sum(np.array(pi_k_2))
mean_r_init = np.sum(np.array(pi_k_3)*np.array(datapoint_r))/np.sum(np.array(pi_k_3))
#calculating SD from mean and data points
std_dev_b_init = (np.sum(np.array(pi_k_1) * ((np.array(datapoint_b))
- mean_b_init) ** (2)) / np.sum(np.array(pi_k_1))) ** (1 / 2)
std_dev_g_init = (np.sum(np.array(pi_k_2) * ((np.array(datapoint_g))
- mean_g_init) ** (2)) / np.sum(np.array(pi_k_2))) ** (1 / 2)
std_dev_r_init = (np.sum(np.array(pi_k_1) * ((np.array(datapoint_r))
- mean_r_init) ** (2)) / np.sum(np.array(pi_k_3))) ** (1 / 2)
iterations = iterations + 1
print(iterations)
return mean_b_init, mean_g_init, mean_r_init, std_dev_b_init, std_dev_g_init, std_dev_r_init
if __name__ == "__main__":
mean_r, mean_g, mean_b, std_dev_r, std_dev_g, std_dev_b = AverageHistogram()
avg_mean_b = sum(mean_b)/len(mean_b)
avg_mean_g = sum(mean_g)/len(mean_g)
avg_mean_r = sum(mean_r)/len(mean_r)
avg_std_dev_b = sum(std_dev_b)/len(std_dev_b)
avg_std_dev_g = sum(std_dev_g)/len(std_dev_g)
avg_std_dev_r = sum(std_dev_r)/len(std_dev_r)
gaussian_b = GaussianEquation(avg_std_dev_b, list(range(0,256)), avg_mean_b)
gaussian_g = GaussianEquation(avg_std_dev_g, list(range(0,256)), avg_mean_g)
gaussian_r = GaussianEquation(avg_std_dev_r, list(range(0,256)), avg_mean_r)
mean_b_init, mean_g_init, mean_r_init, std_dev_b_init, std_dev_g_init, std_dev_r_init = EM()
greenboi_r = GaussianEquation(std_dev_r_init, list(range(0,256)), mean_r_init)
greenboi_g = GaussianEquation(std_dev_g_init, list(range(0,256)), mean_g_init)
greenboi_b = GaussianEquation(std_dev_b_init, list(range(0,256)), mean_b_init)
plt.plot(greenboi_r, "r", greenboi_g, "g", greenboi_b, "b")
plt.show()
while True:
ret,frame = vid.read()
if frame is not None:
frame_b=frame[:,:,0]
frame_g=frame[:,:,1]
frame_r=frame[:,:,2]
if ret == True:
frame_updated=np.zeros(frame_g.shape, dtype = np.uint8)
coordinates = np.indices((frame_g.shape[0], frame_g.shape[1]))
coordinates = coordinates.reshape(2, -1)
x,y=coordinates[0],coordinates[1]
pixel_valr=frame_r[x,y]
pixel_valg=frame_g[x,y]
pixel_valb=frame_b[x,y]
indices1=np.where((greenboi_g[pixel_valg]>0.0121) & (greenboi_b[pixel_valb]>0.010) & (greenboi_r[pixel_valr]>0.004))
x1,y1=x[indices1[0]],y[indices1[0]]
frame_updated[x1,y1]=255
kernel_square = np.ones((10,10),np.uint8)
kernel_ellipse = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
np.array([[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0]], dtype=np.uint8)
blur = cv.blur(frame_updated,(10,10))
ret_thresh, thresholded = cv.threshold(blur, 50, 255, cv.THRESH_BINARY)
edges = cv.Canny(thresholded, 200, 300)
dilated = cv.dilate(thresholded, kernel_ellipse, iterations = 1)
_,contours, _ = cv.findContours(dilated, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
#cont_img = cv.drawContours(frame, contours, -1, (0,0,255), 5)
# Draw circle to fit the contours enclosing specified area
for c in contours:
if cv.contourArea(c) > 40:
print("inside1")
(x,y),r = cv.minEnclosingCircle(c)
center = (int(x),int(y))
r = int(r)
print(r)
if r > 9 and r < 37 and y<400 and y>150:
print("inside")
cv.circle(frame,center,r,(0,128,255),2)
cv.imshow("threshold", frame)
k = cv.waitKey(15) & 0xff
if k == 27:
break
else:
break
vid.release()
cv.destroyAllWindows()