-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_methods.py
87 lines (80 loc) · 2.83 KB
/
train_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import json
import os
import pandas as pd
import time
import torch
import numpy as np
from bhmtorch_cpu import BHM_VELOCITY_PYTORCH
def save_mdl(args, model, path, train_time):
"""
@param model: BHM Module to save
@param path (str): path relative to the mdl folder to save to
"""
mdl_type = type(model).__name__
print(" mdl_type:", mdl_type)
print(" Saving as ./mdls/velocity/{}".format(path))
if not os.path.isdir("./mdls/velocity/"):
os.makedirs('./mdls/velocity/')
if args.likelihood_type == "gamma":
torch.save({
'grid': model.grid,
"w_hatx":model.w_hatx,
"w_haty":model.w_haty,
"w_hatz":model.w_hatz,
"likelihood_type":model.likelihood_type,
'train_time': train_time,
}, "./mdls/velocity/{}".format(path)
) ###///###
elif args.likelihood_type == "gaussian":
torch.save({
'mu_x': model.mu_x,
'sig_x': model.sig_x,
'mu_y': model.mu_y,
'sig_y': model.sig_y,
'mu_z': model.mu_z,
'sig_z': model.sig_z,
'grid': model.grid,
'alpha': model.alpha,
'beta': model.beta,
'likelihood_type': model.likelihood_type,
'train_time': train_time,
}, "./mdls/velocity/{}".format(path)
)
else:
raise ValueError("Unsupported likelihood type: \"{}\"".format(args.likelihood_type))
def train_velocity(args, alpha, beta, X, y_vx, y_vy, y_vz, partitions, cell_resolution, cell_max_min, framei):
totalTime = 0
# filter X,y such that only give the X's where y is 1
if args.likelihood_type == "gamma":
bhm_velocity_mdl = BHM_VELOCITY_PYTORCH(
gamma=args.gamma,
grid=None,
cell_resolution=cell_resolution,
cell_max_min=cell_max_min,
X=X,
nIter=1,
kernel_type=args.kernel_type,
likelihood_type=args.likelihood_type
)
elif args.likelihood_type == "gaussian":
bhm_velocity_mdl = BHM_VELOCITY_PYTORCH(
gamma=args.gamma,
alpha=alpha,
beta=beta,
grid=None,
cell_resolution=cell_resolution,
cell_max_min=cell_max_min,
X=X,
nIter=1,
kernel_type=args.kernel_type,
likelihood_type=args.likelihood_type
)
else:
raise ValueError(" Unsupported likelihood type: \"{}\"".format(args.likelihood_type))
time1 = time.time()
bhm_velocity_mdl.fit(X, y_vx, y_vy, y_vz, eps=0) # , y_vy, y_vz
train_time = time.time() - time1
print(' Total training time={} s'.format(round(train_time, 2)))
save_mdl(args, bhm_velocity_mdl, '{}_f{}'.format(args.save_model_path, framei), train_time)
del bhm_velocity_mdl