title | author | license | tags | summary | layout | src |
---|---|---|---|---|---|---|
Using Eigen for eigenvalues |
Dirk Eddelbuettel |
GPL (>= 2) |
eigen matrix |
This example shows how to compute eigenvalues using Eigen |
post |
2013-01-11-eigen-eigenvalues.cpp |
A previous post showed how to compute eigenvalues using the Armadillo library via RcppArmadillo.
Here, we do the same using Eigen and the RcppEigen package.
{% highlight cpp %} #include <RcppEigen.h>
// [[Rcpp::depends(RcppEigen)]]
using Eigen::Map; // 'maps' rather than copies using Eigen::MatrixXd; // variable size matrix, double precision using Eigen::VectorXd; // variable size vector, double precision using Eigen::SelfAdjointEigenSolver; // one of the eigenvalue solvers
// [[Rcpp::export]] VectorXd getEigenValues(Map M) { SelfAdjointEigenSolver es(M); return es.eigenvalues(); } {% endhighlight %}
We can illustrate this easily via a random sample matrix.
{% highlight r %} set.seed(42) X <- matrix(rnorm(44), 4, 4) Z <- X %% t(X)
getEigenValues(Z) {% endhighlight %}
[1] 0.3319 1.6856 2.4099 14.2100
In comparison, R gets the same results (in reverse order) and also returns the eigenvectors.
{% highlight r %} eigen(Z) {% endhighlight %}
$values [1] 14.2100 2.4099 1.6856 0.3319 $vectors [,1] [,2] [,3] [,4] [1,] 0.69988 -0.55799 0.4458 -0.00627 [2,] -0.06833 -0.08433 0.0157 0.99397 [3,] 0.44100 -0.15334 -0.8838 0.03127 [4,] 0.55769 0.81118 0.1413 0.10493
Eigen has other a lot of other decompositions, see its documentation for more details.