EFFICIENT IN-MEMORY NON-EQUI JOINS

using the #rdatatable package

Arun Srinivasan

DEVELOPER/DATA ANALYST, OPEN ANALYTICS

WHO AM I?

- 1. Bioinformatician / Computational Biologist
- 2. R and data.table user since 2011
- 3. data.table developer since late 2013
- 4. Data analyst @Open Analytics since Feb'15

THE PROBLEM

For each row in B replace A\$z where A\$x <= B\$x & A\$y > B\$y with NA

		А	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	В	
	X	У
1:	2	3
2:	4	8

THE PROBLEM

For each row in B replace A\$z where A\$x <= B\$x & A\$y > B\$y with NA

		A	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	E	В		
	X	У		
1:	2	3		
2:	4	8		

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	NA
4:	2	6	NA
5:	4	5	5
6:	4	5	6
7:	4	10	NA

How can we accomplish this using data.table?

Before answering that, a quick detour...

ROW SUBSETS

Return all rows where x == 4

	•
L	4
	1

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	X	У	Z
1:	4	5	5
2:	4	5	6
3:	4	10	3

ROW SUBSETS

Return all rows where x == 4

A

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	X	У	Z
1:	4	5	5
2:	4	5	6
3:	4	10	3

ROW SUBSETS

Return all rows where x == 4 & y == 5

Λ
_/

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

$$A[x==4L \& y==5L]$$

SUBSET+UPDATE

Update col z for all rows where x == 4 & y == 5 with NA

A

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	NA
6:	4	5	NA
7:	4	10	3

$$A[x==4L \& y==5L, z:=NA]$$

ROW SUBSET? JOIN?

Return all rows where rows of B matches A on cols x and y

		Α	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

JOIN...

Return all rows where rows of B matches A on cols x and y

	A		
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

JOIN AS SUBSET

Return all rows where rows of B matches A on cols x and y

		Α	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

A[B, on=.
$$(x, y)$$
]

But why do we need to do joins as subsets?

JOIN+UPDATE

Replace A\$z where B matches A on cols x and y with NA

A	

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

B

	X	У
1:	1	2
2:	4	5

	X	У	Z
1:	1	2	NA
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	NA
6:	4	5	NA
7:	4	10	3

JOIN+UPDATE

Replace A\$z where B matches A on cols x and y with NA

A

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

В

	X	У
1:	1	2
2:	4	5

	X	У	Z
1:	1	2	NA
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	NA
6:	4	5	NA
7:	4	10	3

$$A[B, on=.(x, y), z:=NA]$$

SUBSET+UPDATE

Update col z for all rows where x == 4 & y == 5 with NA

A

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	NA
6:	4	5	NA
7:	4	10	3

$$A[x==4L \& y==5L, z:=NA]$$

THE PROBLEM

For each row in B replace A\$z where A\$x <= B\$x & A\$y > B\$y with NA

		A	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	В	
	X	У
1:	2	3
2:	4	8

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	NA
4:	2	6	NA
5:	4	5	5
6:	4	5	6
7:	4	10	NA

NON-EQUI JOIN+UPDATE

For each row in B replace A\$z where A\$x <= B\$x & A\$y > B\$y with NA

A

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

X Y
1: 2 3
2: 4 8

	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	NA
4:	2	6	NA
5:	4	5	5
6:	4	5	6
7:	4	10	NA

A[B, on=.(x<=x, y>y), z:=NA]

Very briefly, how does it work?

EXTENSION OF NCLIST

Oxford Journals > Science & Mathematics > Bioinformatics > Volume 23 Issue 11 > Pp. 1386-1393.

Nested Containment List (NCList): a new algorithm for accelerating interval query of genome alignment and interval databases

Alexander V. Alekseyenko¹ and Christopher J. Lee²,*

¹Department of Biomathematics, David Geffen School of Medicine and ²Molecular Biology Institute, Center for Computational Biology, Institute for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095–1570, USA

*To whom correspondence should be addressed.

Received June 16, 2006. Revision received December 9, 2006. Accepted December 18, 2006. « Previous | Next Article »
Table of Contents

This Article

Bioinformatics (2007) 23 (11): 1386-1393. doi: 10.1093/bioinformatics/btl647 First published online: January 18, 2007

This article is Open Access

» Abstract *Free*Full Text (HTML) *Free*Full Text (PDF) *Free*

All Versions of this Article: btl647v1

HOW DOES IT WORK?

data.table uses binary search for joins. For non-equi joins, we need to create a special id column based on the columns being joined on.

		Α	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

	В	
	X	У
1:	2	3
2:	4	8

HOW DOES IT WORK?

data.table uses binary search for joins. For non-equi joins, we need to create a special id column based on the columns being joined on.

		\mathcal{A}	
	X	У	Z
1:	1	2	2
2:	2	3	1
3:	2	4	7
4:	2	6	4
5:	4	5	5
6:	4	5	6
7:	4	10	3

id
1
1
1
1
2
2
1

	В	
	X	У
1:	2	3
2:	4	8

HOW DOES IT WORK?

On a sorted data.table, within each id, all join columns should be in increasing order, independently. Run binary search for each id.

Combine all matched indices.

	X	У	Z	id
1:	1	2	2	1
2:	2	3	1	1
3:	2	4	7	1
4:	2	6	4	1
5:	4	10	3	1

A1

	X	У	Z	id
1:	4	5	5	2
2:	4	5	6	2

indices from A1 [B] indices from A2 [B]

PERFORMANCE

nrow(A) ~= 40m, nrow(B) ~= 33k						
Method	Run Time(s)	Memory used (GB)				
dt-non-equi	4.9	1.2				
dt-foverlaps	4.1	1.4				
findOverlaps	6.2	2.1				
RSQLite	87.0*	_				

^{*} nrow(A) = 100,000

THANKS TO

Matt for the ideas on extending the on argument for non-equi joins.

Jan Gorecki for extensive testing and feedback during development.

... and to you for listening.

ADDITIONAL INFO

Homepage: https://github.com/Rdatatable/data.table/wiki

Try v1.9.7: https://github.com/Rdatatable/data.table/wiki/Installation

Vignettes: https://github.com/Rdatatable/data.table/wiki/Getting-started