-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathVAE.py
133 lines (112 loc) · 4.19 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image
if not os.path.exists('./mlp_img'):
os.mkdir('./mlp_img')
def to_img(x):
x = x.view(x.size(0), 1, 28, 28)
return x
num_epochs = 200
batch_size = 128
learning_rate = 1e-3
def plot_sample_img(img, name):
img = img.view(1, 28, 28)
save_image(img, './sample_{}.png'.format(name))
def min_max_normalization(tensor, min_value, max_value):
min_tensor = tensor.min()
tensor = (tensor - min_tensor)
max_tensor = tensor.max()
tensor = tensor / max_tensor
tensor = tensor * (max_value - min_value) + min_value
return tensor
def tensor_round(tensor):
return torch.round(tensor)
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda tensor:min_max_normalization(tensor, 0, 1)),
transforms.Lambda(lambda tensor:tensor_round(tensor))
])
dataset = MNIST('./data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
class VariationalAutoencoder(nn.Module):
def __init__(self):
super(VariationalAutoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 400),
nn.ReLU(True),
nn.Linear(400, 40))
self.decoder = nn.Sequential(
nn.Linear(20, 400),
nn.ReLU(True),
nn.Linear(400, 28 * 28),
nn.Sigmoid())
def reparametrize(self, mu, logvar):
var = logvar.exp()
std = var.sqrt()
eps = Variable(torch.cuda.FloatTensor(std.size()).normal_())
return eps.mul(std).add(mu)
def forward(self, x):
h = self.encoder(x)
mu = h[:, :20]
logvar = h[:, 20:]
z = self.reparametrize(mu, logvar)
x_hat = self.decoder(z)
return x_hat, mu, logvar
def generation_with_interpolation(self, x_one, x_two, alpha):
hidden_one = self.encoder(x_one)
hidden_two = self.encoder(x_two)
mu_one = hidden_one[:, :20]
logvar_one = hidden_one[:, 20:]
mu_two = hidden_two[:, :20]
logvar_two = hidden_two[:, 20:]
mu = (1 - alpha) * mu_one + alpha * mu_two
logvar = (1 - alpha) * logvar_one + alpha * logvar_two
z = self.reparametrize(mu, logvar)
generated_image = self.decoder(z)
return generated_image
model = VariationalAutoencoder().cuda()
BCE = nn.BCELoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img = img.view(img.size(0), -1)
img = Variable(img).cuda()
# ===================forward=====================
x_hat, mu, logvar = model(img)
NKLD = mu.pow(2).add(logvar.exp()).mul(-1).add(logvar.add(1))
KLD = torch.sum(NKLD).mul(-0.5)
KLD /= 128 * 784
loss = BCE(x_hat, img) + KLD
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}'
.format(epoch + 1, num_epochs, loss.data[0]))
if epoch % 10 == 0:
x = to_img(img.cpu().data)
x_hat = to_img(x_hat.cpu().data)
save_image(x, './mlp_img/x_{}.png'.format(epoch))
save_image(x_hat, './mlp_img/x_hat_{}.png'.format(epoch))
batch = iter(dataloader).next()[0]
batch = batch.view(batch.size(0), -1)
batch = Variable(batch).cuda()
x_one = batch[0:1]
x_two = batch[1:2]
generated_images = []
for alpha in torch.arange(0.0, 1.0, 0.1):
generated_images.append(model.generation_with_interpolation(
x_one, x_two, alpha))
generated_images = torch.cat(generated_images, 0).cpu().data
save_image(generated_images.view(-1, 1, 28, 28),
'./generated/output_interpolate_{}.png'.format(epoch),
nrow=1)
torch.save(model.state_dict(), './sim_variational_autoencoder.pth')