-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.tex
57 lines (41 loc) · 1.28 KB
/
example.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
\documentclass[slidescentered]{beamer}
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{color}
\usetheme{UniboTesi}
\title{Unibo Thesis Example}
\supervisor{Prof. Pico de Paperis}
\cosupervisor{Dr. Archimede Pitagorico}
\subtitle{There is No Largest Prime Number}
\author{Paolino Paperino}
\date{\today}
\department{Physics and Astronomy}
\school{Science}
\degree{Master Degree in Physics}
\begin{document}
\begin{frame}[noframenumbering]
\titlepage
\end{frame}
\begin{frame}{There is No Largest Prime Number}{The proof uses \textit{reductio ad absurdum}}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime
number not in the first $p$ numbers.
\end{enumerate}
\end{frame}
\begin{frame}{A title}{And a Subtitle}
\begin{itemize}
\item one
\item two
\end{itemize}
\end{frame}
\begin{frame}{Only an image of a Gaussian}
\centering\includegraphics[width=.8\paperwidth]{./imgs/gaussian.png}
\end{frame}
\end{document}