-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
108 lines (88 loc) · 3.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import sys
import keras
import numpy
import matplotlib.pyplot as plt
import vhdl
__author__ = "Héctor Ochoa Ortiz"
def usageFail(src, txt=None):
if txt is not None:
print("ERROR: " + txt, file=sys.stderr)
print("Usage: ", src, "<trainingFile> <inputNumber> <neuronNumberForEachLayer> <trainingEpochs> <batchSize>", file=sys.stderr)
print(" The training file should be a csv file, with ',' separators.", file=sys.stderr)
print(" The inputNumber-th first columns of the file will be the input training dataset, from the inputNumber-th column to the final column of the file will be the output training dataset.", file=sys.stderr)
print(" The neuron numbers for each layer should be separated by a ','.", file=sys.stderr)
print("Example: ", src, "training_datasets/pima-indians-diabetes.csv 8 3,5,1 100 10", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
args = sys.argv
if len(args) != 6:
usageFail(args[0], "Wrong number of parameters")
neurons = args[3].split(",")
# ensure parameters are correct
try:
inputNumber = int(args[2])
if not inputNumber > 0:
usageFail(args[0], "Input number must be more than 0")
for i in range(len(neurons)):
neurons[i] = int(neurons[i])
if not neurons[i] > 0:
usageFail(args[0], "Every layer must have more than 0 neurons")
epochs = int(args[4])
if not epochs > 0:
usageFail(args[0], "Epochs must be more than 0")
batch_size = int(args[5])
if not batch_size > 0:
usageFail(args[0], "Batch size must be more than 0")
except Exception as e:
usageFail(args[0], str(e))
# load the dataset
dataset = numpy.loadtxt(args[1], delimiter=',')
# split into input (X) and output (y) variables
X = dataset[:, 0:inputNumber]
y = dataset[:, inputNumber:]
if y.shape[1] != neurons[len(neurons)-1]:
usageFail(args[0], "Csv output columns does not correspond to output layer neuron number")
# create the network model
model = keras.models.Sequential()
# add layers
model.add(keras.layers.Dense(units=neurons[0], input_dim=inputNumber, activation="hard_sigmoid"))
for i in neurons[1:]:
model.add(keras.layers.Dense(units=i, activation="hard_sigmoid"))
# configure learning process
model.compile(loss='binary_crossentropy', optimizer=keras.optimizers.SGD(), metrics=["accuracy"])
model.summary()
# fit the keras model on the dataset
history = model.fit(X, y, epochs=epochs, batch_size=batch_size, verbose=1)
# evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy * 100))
# Get weights and biases
counter = 0
a = {}
for l in model.layers:
a.update({counter: {"w": l.get_weights()[0], "b": l.get_weights()[1]}})
counter += 1
print("\n")
print("--WEIGHTS--")
print(a)
print("\n")
keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=False)
# Plot accuracy and loss values
plt.figure()
plt.subplot(211)
plt.plot(history.history['accuracy'], color='blue')
plt.title('Model accuracy and loss')
plt.ylabel('Accuracy')
plt.subplot(212)
plt.plot(history.history['loss'], color='darkred')
plt.ylabel('Loss')
plt.xlabel('Epoch')
#plt.legend(['Train', 'Test'], loc='upper left')
plt.savefig('acc_loss.png')
#plt.show()
vhdl.create(
input_dim=inputNumber,
neurons=neurons,
weights=a
)
pass