-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvhdl.py
339 lines (299 loc) · 14 KB
/
vhdl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import numpy
import bitstring
import datetime
__author__ = "Héctor Ochoa Ortiz"
def floatToBinary(n):
"""
Returns the binary representation of a numpy float32 in IEEE 754 32-bit float standard
"""
if not isinstance(n, numpy.float32):
raise TypeError("n must be numpy.float32")
return bitstring.BitArray(float=n, length=32).bin
def generate_states(input_dim: int, neurons: list):
s = ["NN_BEGIN"]
for l in range(len(neurons)):
# For each layer
s.append("LAYER" + str(l) + "_MUL")
if l == 0:
r = range(input_dim - 1)
else:
r = range(neurons[l-1] - 1)
for n in r:
# For each neuron in the previous layer - 1
s.append("LAYER" + str(l) + "_ADD" + str(n))
s.append("LAYER" + str(l) + "_ADD" + str(n) + "ACK")
s.append("LAYER" + str(l) + "_ADDBIAS")
s.append("LAYER" + str(l) + "_ACTFUNC")
s.append("NN_END")
return s
def create(input_dim: int, neurons: list, weights: dict):
print("--Writing VHDL file--")
with open("neuralNetwork.vhd", "w") as f:
f.write("\n".join([
"-- File: neuralNetwork.vhd",
"-- Generated by: vhdl.py",
"-- Author: Héctor Ochoa Ortiz",
"-- Datetime: " + datetime.datetime.utcnow().isoformat() + "Z",
"",
"library IEEE;",
"use IEEE.std_logic_1164.all;",
"use IEEE.numeric_std.all;",
"",
"use work.FloatPt.all;",
"use work.activationFunct.all;",
"",
"ENTITY neuralNetwork IS",
"END neuralNetwork;",
"",
"ARCHITECTURE behavior OF neuralNetwork IS",
"",
"-- Clock period definitions",
"constant CLK_period: time := 10 ns;",
"",
"--***********--",
"--* SIGNALS *--",
"--***********--",
"",
"SIGNAL clk, reset : std_logic;",
"type NN_STATE is (" + ", ".join(generate_states(input_dim, neurons)) + ");",
"signal state: NN_STATE;",
"SIGNAL " + ", ".join(("input" + str(i)) for i in range(input_dim)) + " : std_logic_vector(31 downto 0); -- Input layer",
"SIGNAL " + ",".join(("final_result" + str(i)) for i in range(neurons[len(neurons) - 1])) + " : std_logic_vector(31 downto 0);"
]))
f.write("\n")
for l in range(len(neurons)):
# For each layer
f.write("\n")
f.write("--- Layer " + str(l) + " ---\n")
if l == 0:
r = range(input_dim)
else:
r = range(neurons[l - 1])
for n in range(neurons[l]):
# For each neuron in the layer
f.write("-- neuron " + str(n) + " --\n")
# Multiplication units signals
s1 = []
s32 = []
f.write("CONSTANT bias" + str(l) + "_" + str(n) + " : std_logic_vector(31 downto 0) := \"" +
str(floatToBinary(weights[l]["b"][n])) + "\";\n")
for pn in r:
# For each neuron in the previous layer
f.write("CONSTANT W" + str(l) + "_" + str(n) + "_" + str(pn) + " : std_logic_vector(31 downto 0) := \"" +
str(floatToBinary(weights[l]["w"][pn][n])) + "\";\n")
s1.append("go_mul" + str(l) + "_" + str(n) + "_" + str(pn))
s1.append("done_mul" + str(l) + "_" + str(n) + "_" + str(pn))
s32.append("rmul" + str(l) + "_" + str(n) + "_" + str(pn))
f.write("SIGNAL " + ", ".join(s32) + " : std_logic_vector(31 downto 0); -- Multiplication\n"
"SIGNAL " + ", ".join(s1) + " : std_logic;\n")
# Addition units signals
s1 = ["go_add" + str(l) + "_" + str(n), "done_add" + str(l) + "_" + str(n)]
s32 = ["A" + str(l) + "_" + str(n), "B" + str(l) + "_" + str(n), "radd" + str(l) + "_" + str(n)]
f.write("SIGNAL " + ", ".join(s32) + " : std_logic_vector(31 downto 0); -- Addition\n"
"SIGNAL " + ", ".join(s1) + " : std_logic;\n")
# Activation function units signals
s1 = ["go_af" + str(l) + "_" + str(n), "done_af" + str(l) + "_" + str(n)]
s32 = ["iaf" + str(l) + "_" + str(n), "result" + str(l) + "_" + str(n)]
f.write("SIGNAL " + ", ".join(s32) + " : std_logic_vector(31 downto 0); -- Activation function\n"
"SIGNAL " + ", ".join(s1) + " : std_logic;\n")
f.write('\n')
f.write('BEGIN\n')
f.write('\n')
f.write('\n')
f.write(" -- CHANGE FOR NEW INPUT --\n")
f.write('\n')
for i in range(input_dim):
f.write(" input" + str(i) + " <= \"00000000000000000000000000000000\"; -- 0.0\n")
f.write('\n')
f.write(" -- CHANGE ABOVE FOR NEW INPUT --\n")
f.write('\n')
f.write('\n')
f.write("\n".join([
" -- Clock process definition",
" clk_process: process",
" begin",
" clk <= '0';",
" wait for CLK_period/2;",
" clk <= '1';",
" wait for CLK_period/2;",
" end process;",
"",
" stim_proc: process",
" begin",
" reset <= '1';",
" wait for CLK_period*2;",
" reset <= '0';",
" wait for CLK_period*20;",
" wait;",
" end process;"
]))
f.write("\n")
f.write("\n")
f.write(" --**********************************--\n")
f.write(" --* INSTANTIATE ARITHMETICAL UNITS *--\n")
f.write(" --**********************************--\n")
for l in range(len(neurons)):
# For each layer
f.write("\n")
f.write(" --- Layer " + str(l) + " ---\n")
if l == 0:
r = range(input_dim)
else:
r = range(neurons[l - 1])
for n in range(neurons[l]):
# For each neuron in the layer
f.write(" -- neuron " + str(n) + " --\n")
# Multiplication units
for pn in r:
# For each neuron in the previous layer
umul = str(l) + "_" + str(n) + "_" + str(pn)
f.write("\n".join([
" umult" + umul + ": FPP_MULT port map",
" ( A => " + ("input" if l == 0 else ("result" + str(l-1) + "_")) + str(pn) + ",",
" B => " + "W" + umul + ",",
" clk => clk,",
" reset => reset,",
" go => go_mul" + umul + ",",
" done => done_mul" + umul + ",",
" overflow => open,",
" result => rmul" + umul + " );"
]))
f.write("\n")
f.write("\n")
# Addition units
uadd = str(l) + "_" + str(n)
f.write("\n".join([
" uadd" + uadd + ": FPP_ADD_SUB port map",
" ( A => A" + uadd + ",",
" B => B" + uadd + ",",
" clk => clk,",
" reset => reset,",
" go => go_add" + uadd + ",",
" done => done_add" + uadd + ",",
" result => radd" + uadd + " );"
]))
f.write("\n")
f.write("\n")
# Activation function units
af = str(l) + "_" + str(n)
f.write("\n".join([
" af" + af + ": hard_sigmoid port map",
" ( X => radd" + af + ",",
" clk => clk,",
" reset => reset,",
" go => go_af" + af + ",",
" done => done_af" + af + ",",
" result => result" + af + " );"
]))
f.write("\n")
f.write("\n")
f.write(" --****************--\n")
f.write(" --* MAIN PROCESS *--\n")
f.write(" --****************--\n")
f.write("\n")
f.write("\n".join([
" MAIN: process (clk, reset, state) is begin",
" if reset = '1' then",
" -- Initialization",
" state <= NN_BEGIN;",
]))
f.write("\n")
for l in range(len(neurons)):
# For each layer
if l == 0:
r = range(input_dim)
else:
r = range(neurons[l - 1])
for n in range(neurons[l]):
# For each neuron in the layer
sfx = str(l) + "_" + str(n)
for pn in r:
# For each neuron in the previous layer
f.write(" go_mul" + sfx + "_" + str(pn) + " <= '0';\n")
f.write(" go_add" + sfx + " <= '0';\n")
f.write(" go_af" + sfx + " <= '0';\n")
f.write(" elsif falling_edge(clk) then\n")
f.write(" case state is\n")
f.write(" when NN_BEGIN =>\n")
for l in range(len(neurons)):
# For each layer
if l == 0:
r = range(input_dim)
r1 = range(input_dim - 1)
else:
r = range(neurons[l - 1])
r1 = range(neurons[l - 1] - 1)
if l == 0:
tab = ""
else:
tab = " "
muls = []
for n in range(neurons[l]):
for pn in r:
muls.append(str(l) + "_" + str(n) + "_" + str(pn))
for m in muls:
f.write(tab + " go_mul" + m + " <= '1';\n")
f.write(tab + " state <= LAYER" + str(l) + "_MUL;\n")
if l != 0:
f.write(" end if;\n")
f.write(" ------\n")
f.write(" when LAYER" + str(l) + "_MUL =>\n")
f.write(" if " + " and ".join("done_mul" + m + " = '1'" for m in muls) + " then\n")
for m in muls:
f.write(" go_mul" + m + " <= '0';\n")
adds = range(neurons[l])
for pn in r1:
# For each neuron in the previous layer - 1
if pn == 0:
tab = " "
else:
tab = ""
for n in adds:
f.write(tab + " A" + str(l) + "_" + str(n) + " <= " + (("rmul" + str(l) + "_" + str(n) + "_" + str(pn)) if pn == 0 else ("radd" + str(l) + "_" + str(n))) + ";\n")
f.write(tab + " B" + str(l) + "_" + str(n) + " <= rmul" + str(l) + "_" + str(n) + "_" + str(pn + 1) + ";\n")
f.write(tab + " go_add" + str(l) + "_" + str(n) + " <= '1';\n")
f.write(tab + " state <= LAYER" + str(l) + "_ADD" + str(pn) + ";\n")
if pn == 0:
f.write(" end if;\n")
f.write(" ------\n")
f.write(" when LAYER" + str(l) + "_ADD" + str(pn) + " =>\n")
f.write(" if " + " and ".join("done_add" + str(l) + "_" + str(n) + " = '1'" for n in adds) + " then\n")
for n in adds:
f.write(" go_add" + str(l) + "_" + str(n) + " <= '0';\n")
f.write(" state <= LAYER" + str(l) + "_ADD" + str(pn) + "ACK;\n")
f.write(" end if;\n")
f.write(" ------\n")
f.write(" when LAYER" + str(l) + "_ADD" + str(pn) + "ACK =>\n")
for n in adds:
f.write(" go_add" + str(l) + "_" + str(n) + " <= '1';\n")
f.write(" state <= LAYER" + str(l) + "_ADDBIAS;\n")
f.write(" ------\n")
f.write(" when LAYER" + str(l) + "_ADDBIAS =>\n")
f.write(" if " + " and ".join("done_add" + str(l) + "_" + str(n) + " = '1'" for n in adds) + " then\n")
for n in adds:
f.write(" go_add" + str(l) + "_" + str(n) + " <= '0';\n")
afs = range(neurons[l])
for n in afs:
f.write(" go_af" + str(l) + "_" + str(n) + " <= '1';\n")
f.write(" state <= LAYER" + str(l) + "_ACTFUNC;\n")
f.write(" end if;\n")
f.write(" ------\n")
f.write(" when LAYER" + str(l) + "_ACTFUNC =>\n")
f.write(" if " + " and ".join("done_af" + str(l) + "_" + str(n) + " = '1'" for n in afs) + " then\n")
for n in afs:
f.write(" go_af" + str(l) + "_" + str(n) + " <= '0';\n")
for i in range(neurons[len(neurons) - 1]):
f.write(" final_result" + str(i) + " <= result" + str(len(neurons) - 1) + "_" + str(i) + ";\n")
f.write("\n".join([
" state <= NN_END;",
" end if;",
" ------",
" when NN_END =>",
" state <= NN_END; --do nothing",
" end case;",
" end if;",
" end process;",
"",
"END;",
]))
f.write("\n")