-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathpreprocessor_utils.py
186 lines (156 loc) · 4.54 KB
/
preprocessor_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class Feature_Scaling():
"""
Scaling and Normalizing the dataset
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
csv_file: input dataset in csv fileformat
fea1: Feature which is to be normalized
RETURNS
=======
Scaled and Normalized value of feature.
"""
def __init__(self, X, csv_file, fea1):
self.csv_file = csv_file
self.X = X
self.fea1 = fea1
def Bell_curve(self, csv_file, fea1):
"""
Plotting Density Plot
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
csv_file: input dataset in csv file format
fea1: Feature ehich is to be normalized
RETURNS
=======
Gaussian bell curve of the feature.
"""
fea1 = self.fea1
csv_file = self.csv_file
df = pd.read_csv(csv_file)
x = df[fea1]
x.plot(kind='density', subplots=True, layout=(3, 3))
plt.show()
def Standard_Scaler(self, X):
"""
Data scaling by Standard Scaler.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
RETURNS
=======
Scaled value of feature.
"""
# X_new = (X - mean) / standerd deviation
X = self.X
for i in range(len(X)):
m = np.mean(X)
X = X - m
X = np.divide(X, np.std(X))
return X
def MaxAbs_Scaler(self):
"""
Data scaling by Max-Abs Scaler.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
RETURNS
=======
Scaled value of feature.
"""
# x= X/ Absolute(max(x))
X = self.X
for i in range(len(X)):
k = abs(max(X))
X = np.divide(X, k)
return X
def Feature_Clipping(self, max, min):
"""
Data scaling by Feature Clipping.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
max: random maximum value taken from user
min: random minimum value taken from user
RETURNS
=======
Scaled value of feature.
"""
X = self.X
for i in range(len(X)):
if X[i] < min:
X[i] == min
if X[i] > max:
X[i] == max
return X
def Z_Score_Normalization(self):
"""
Data scaling by Z-Score Normalization.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
RETURNS
=======
Normalized value of feature.
"""
# X_new =( X - mean )/standard deviation
X = self.X
for i in range(len(X)):
Mean = np.mean(X)
Std = np.std(X)
X[i] = (X[i] - Mean)
X = np.divide(X, Std)
return X
def Mean_Normalization(self):
"""
Data scaling by Mean Normalization.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
RETURNS
=======
Normalized value of feature.
"""
# X_new = (X - avg ) / (max - min)
X = self.X
for i in range(len(X)):
Min = min(X)
Max = max(X)
Avg = np.average(X)
X = (X - Avg)
X = np.divide(X, (Max - Min))
return X
def MinMax_Normalization(self, new_min=0, new_max=1):
"""
Data scaling by Min-Max Normalization.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
new_max: random maximum value taken from the user
new_min: random minimum value taken from the user
RETURNS
=======
Normalized value of feature.
"""
# X_new = (((X - min)/(max - min)) * (new_max - new_min)) + new_min
X = self.X
for i in range(len(X)):
Min = min(X)
Max = max(X)
print(Min, Max)
X = X - Min
X = np.divide(X, (Max - Min))
X = (X * (new_max - new_min)) + new_min
return X