-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbenchmark.py
218 lines (203 loc) · 7.96 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# adapted from https://github.com/facebookresearch/pycls/blob/f8cd962737e33ce9e19b3083a33551da95c2d9c0/pycls/core/benchmark.py
import torch
import time
import torch.cuda.amp as amp
import torch.nn.functional
import torch.nn as nn
@torch.no_grad()
def compute_eval_time(model,device,warmup_iter,num_iter,val_input_size,mixed_precision):
model.eval()
if isinstance(val_input_size,int):
h,w=val_input_size,val_input_size*2
else:
h,w=val_input_size
x=torch.randn(1,3,h,w).to(device)
times=[]
for cur_iter in range(warmup_iter+num_iter):
if cur_iter == warmup_iter:
times.clear()
t1=time.time()
with amp.autocast(enabled=mixed_precision):
output = model(x)
torch.cuda.synchronize()
t2=time.time()
times.append(t2-t1)
return average(times)
@torch.no_grad()
def compute_eval_time2(model,x,warmup_iter,num_iter,mixed_precision):
model.eval()
times=[]
for cur_iter in range(warmup_iter+num_iter):
if cur_iter == warmup_iter:
times.clear()
t1=time.time()
with amp.autocast(enabled=mixed_precision):
output = model(x)
torch.cuda.synchronize()
t2=time.time()
times.append(t2-t1)
return average(times)
def compute_train_time2(model,x,target,warmup_iter,num_iter,mixed_precision):
model.train()
times=[]
for cur_iter in range(warmup_iter+num_iter):
if cur_iter == warmup_iter:
times.clear()
t1=time.time()
with amp.autocast(enabled=mixed_precision):
output = model(x,target)
torch.cuda.synchronize()
t2=time.time()
times.append(t2-t1)
return average(times)
def average(v):
return sum(v)/len(v)
def compute_train_time(model,warmup_iter,num_iter,train_crop_size,batch_size,num_classes,mixed_precision, loss_fun):
model.train()
if isinstance(train_crop_size,int):
crop_h,crop_w=train_crop_size,train_crop_size
else:
crop_h,crop_w=train_crop_size
x=torch.randn(batch_size, 3, crop_h,crop_w).cuda(non_blocking=False)
target=torch.randint(0,num_classes,(batch_size, crop_h,crop_w)).cuda(non_blocking=False)
fw_times=[]
bw_times=[]
scaler = amp.GradScaler(enabled=mixed_precision)
for cur_iter in range(warmup_iter+num_iter):
if cur_iter == warmup_iter:
fw_times.clear()
bw_times.clear()
t1=time.time()
with amp.autocast(enabled=mixed_precision):
output = model(x)
loss = loss_fun(output,target)
torch.cuda.synchronize()
t2=time.time()
scaler.scale(loss).backward()
torch.cuda.synchronize()
t3=time.time()
fw_times.append(t2-t1)
bw_times.append(t3-t2)
return average(fw_times),average(bw_times)
def compute_loader_time(data_loader,warmup_iter,num_iter):
times=[]
data_loader_iter=iter(data_loader)
for cur_iter in range(min(warmup_iter+num_iter,len(data_loader))):
if cur_iter == warmup_iter:
times.clear()
t1=time.time()
next(data_loader_iter)
t2=time.time()
times.append(t2-t1)
return average(times)
def memory_used(device):
x=torch.cuda.memory_allocated(device)
return round(x/1024/1024)
def max_memory_used(device):
x=torch.cuda.max_memory_allocated(device)
return round(x/1024/1024)
def memory_test_helper(model,device,train_crop_size,batch_size,num_classes,mixed_precision,loss_fun):
if isinstance(train_crop_size,int):
crop_h,crop_w=train_crop_size,train_crop_size
else:
crop_h,crop_w=train_crop_size
model.train()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats(device)
scaler = amp.GradScaler(enabled=mixed_precision)
x=torch.randn(batch_size, 3, crop_h,crop_w).to(device)
target=torch.randint(0,num_classes,(batch_size,crop_h,crop_w)).to(device)
t1=memory_used(device)
with amp.autocast(enabled=mixed_precision):
output = model(x)
loss = loss_fun(output,target)
scaler.scale(loss).backward()
torch.cuda.synchronize()
t2=max_memory_used(device)
return t2-t1
def compute_memory_usage(model,device,crop_size,batch_size,num_classes,mixed_precision, loss_fun):
for p in model.parameters():
p.grad=None
try:
t=memory_test_helper(model,device,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
t=memory_test_helper(model,device,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
except:
t=-1
print("out of memory")
for p in model.parameters():
p.grad=None
return t
def compute_time_no_loader(model,warmup_iter,num_iter,device,crop_size,val_input_size,batch_size,num_classes,mixed_precision,loss_fun):
model=model.to(device)
print("benchmarking eval time")
eval_time=compute_eval_time(model,device,warmup_iter,num_iter,val_input_size,mixed_precision)
print("benchmarking train time")
train_fw_time,train_bw_time=compute_train_time(model,warmup_iter,num_iter,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
train_time=train_fw_time+train_bw_time
print("benchmarking memory usage")
memory_usage=compute_memory_usage(model,device,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
dic1={
"eval_time":eval_time,
"train_time":train_time,
"memory_usage":memory_usage
}
return dic1
def compute_time_full(model,data_loader,warmup_iter,num_iter,device,crop_size,val_input_size,batch_size,num_classes,mixed_precision,loss_fun):
model=model.to(device)
print("benchmarking eval time")
eval_time=compute_eval_time(model,device,warmup_iter,num_iter,val_input_size,mixed_precision)
print("benchmarking train time")
train_fw_time,train_bw_time=compute_train_time(model,warmup_iter,num_iter,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
train_time=train_fw_time+train_bw_time
print("benchmarking memory usage")
memory_usage=compute_memory_usage(model,device,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
print("benchmarking loader time")
loader_time=compute_loader_time(data_loader,warmup_iter,num_iter)
loader_overhead=max(0,loader_time-train_time)/train_time
dic1={
"eval_time":eval_time,
"train_time":train_time,
"memory_usage":memory_usage,
"loader_time":loader_time,
"loader_overhead":loader_overhead
}
dic2={
"eval_time":eval_time*len(data_loader),
"train_time":train_time*len(data_loader),
"memory_usage":memory_usage,
"loader_time":loader_time,
"loader_overhead":loader_overhead
}
return dic1
def benchmark_eval(models,x,mixed_precision):
torch.backends.cudnn.benchmark=True
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
x=x.to(device)
ts=[]
for model in models:
model=model.to(device)
t=compute_eval_time2(model,x,10,100,mixed_precision)
model.cpu()
print(t)
ts.append(t)
return ts
def benchmark_train(models,batch_size,crop_size,mixed_precision,num_classes=19):
torch.backends.cudnn.benchmark=True
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
loss_fun=nn.CrossEntropyLoss(weight=None,ignore_index=255)
ts=[]
for model in models:
model=model.to(device)
fw,bw=compute_train_time(model,1,3,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
model.cpu()
print(fw+bw)
ts.append(fw+bw)
return ts
def benchmark_memory(models,batch_size,crop_size,mixed_precision,num_classes=19):
torch.backends.cudnn.benchmark=True
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
loss_fun=nn.CrossEntropyLoss(ignore_index=255)
for model in models:
model=model.to(device)
memory_usage=compute_memory_usage(model,device,crop_size,batch_size,num_classes,mixed_precision,loss_fun)
print(memory_usage)