-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_meta_nn.py
140 lines (118 loc) · 4.16 KB
/
train_meta_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import importlib
import logging
import os
from os.path import abspath, dirname, join
import sys
from sacred import Experiment
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from configuration import CONFIG, meta_models
from src.MetaSeg.functions.helper import load_data
from src.MetaSeg.functions.meta_nn import MetricDataset
from src.log_utils import log_config
ex = Experiment("train_meta_nn")
log = logging.getLogger()
log.handlers = []
log_format = logging.Formatter(
"%(asctime)s || %(name)s - [%(levelname)s] - %(message)s"
)
streamhandler = logging.StreamHandler(sys.stdout)
streamhandler.setFormatter(log_format)
log.addHandler(streamhandler)
log.setLevel("INFO")
ex.logger = log
@ex.config
def config():
args = dict( # noqa: F841
dataset="cityscapes",
dataset_val="cityscapes_val",
meta_model_name=CONFIG.META_MODEL_NAME,
epochs=50,
learning_rate=1e-4,
weight_decay=5e-4,
batch_size=256,
n_jobs=CONFIG.NUM_CORES,
gpu=CONFIG.GPU_ID,
save_folder=abspath(join(".", "src")),
net_name="meta_nn.pth",
)
@ex.automain
def train(args, _run, _log):
log_config(_run, _log)
os.makedirs(dirname(args["save_folder"]), exist_ok=True)
_log.info("Loading data...")
xa, ya, _, _, xa_mean, xa_std, classes_mean, classes_std, *_ = load_data(
args["dataset"]
)
xa_val, ya_val, *_ = load_data(
args["dataset_val"],
xa_mean=xa_mean,
xa_std=xa_std,
classes_mean=classes_mean,
classes_std=classes_std,
)
dat = MetricDataset([xa, ya])
dat_val = MetricDataset([xa_val, ya_val])
_log.info("Training dataset size: {}".format(len(dat)))
_log.info("Validation dataset size: {}".format(len(dat_val)))
datloader = DataLoader(
dat, args["batch_size"], shuffle=True, num_workers=args["n_jobs"]
)
valloader = DataLoader(
dat_val, args["batch_size"], shuffle=True, num_workers=args["n_jobs"]
)
_log.info("Initializing network...")
net = getattr(
importlib.import_module(meta_models[args["meta_model_name"]].module_name),
meta_models[args["meta_model_name"]].class_name,
)(xa.shape[1], **meta_models[args["meta_model_name"]].kwargs).cuda(args["gpu"])
optimizer = torch.optim.Adam(
net.parameters(), lr=args["learning_rate"], weight_decay=args["weight_decay"]
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[20, 40], gamma=0.1
)
crit = nn.BCEWithLogitsLoss().cuda(args["gpu"])
crit_val = nn.BCEWithLogitsLoss(reduction="none")
min_loss = float("inf")
for e in range(args["epochs"]):
_log.info("Epoch {}/{}".format(e + 1, args["epochs"]))
_log.info("Training phase...")
net.train()
avg_loss = []
for x, y in datloader:
optimizer.zero_grad()
x, y = x.cuda(args["gpu"]), y.cuda(args["gpu"])
out = net(x)
loss = crit(out, y)
loss.backward()
optimizer.step()
avg_loss.append(loss.item())
# _run.log_scalar('batch_loss', loss.item())
avg_loss = sum(avg_loss) / len(avg_loss)
_run.log_scalar("train_loss", avg_loss)
_log.info("Validation phase...")
net.eval()
avg_val_loss = []
with torch.no_grad():
for x, y in valloader:
x = x.cuda(args["gpu"])
out = net(x).data.cpu()
avg_val_loss.append(crit_val(out, y))
avg_val_loss = torch.cat(avg_val_loss).mean().item()
_run.log_scalar("val_loss", avg_val_loss)
if avg_val_loss < min_loss:
min_loss = avg_val_loss
_log.info("Average validation loss decreased, saved model.")
torch.save(
{
"state_dict": net.state_dict(),
"train_xa_mean": xa_mean,
"train_xa_std": xa_std,
"train_classes_mean": classes_mean,
"train_classes_std": classes_std,
},
join(args["save_folder"], args["net_name"]),
)
scheduler.step()