forked from dnguyengithub/MultitaskAIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvessel_type_classification.py
293 lines (227 loc) · 10.1 KB
/
vessel_type_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 10 13:10:40 2018
@author: vnguye04
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
import pickle
LEARNING_RATE = 0.0003
BATCH_SIZE = 100
DISPLAY_INTERS = 30000
N_CLASSES = 4
lambda_loss_amount = 0.005
NUM_EPOCHS = 100
LABELS = [
"Cargo",
"Passenger",
"Tanker",
"Tug"
]
with open("/users/local/dnguyen/Datasets/AIS_datasets/MarineC/MarineC_Jan2014_norm/MarineC_Jan2014_norm_train_rnn_state.pkl","rb") as f:
l_data_train = pickle.load(f)
with open("/users/local/dnguyen/Datasets/AIS_datasets/MarineC/MarineC_Jan2014_norm/MarineC_Jan2014_norm_test_rnn_state.pkl","rb") as f:
l_data_test = pickle.load(f)
X_train = []
Y_train = []
X_test = []
Y_test = []
for D in l_data_train:
X_train.append(D['rnn_state'][:,1,:]) #(144, 400)
Y_train.append(D['vessel_type'])
X_train = np.array(X_train)
Y_train = np.array(Y_train)
for D in l_data_test:
X_test.append(D['rnn_state'][:,1,:]) #(144, 400)
Y_test.append(D['vessel_type'])
X_test = np.array(X_test)
Y_test = np.array(Y_test)
x = tf.placeholder(tf.float32, [None, 144, 400])
# dynamically reshape the input
x_shaped = tf.reshape(x, [-1, 144, 400, 1])
y = tf.placeholder(tf.float32, [None, N_CLASSES])
keep_prob = tf.placeholder(tf.float32)
def one_hot(y_):
# Function to encode output labels from number indexes
# e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]
y_ = y_.reshape(len(y_))
n_values = int(np.max(y_)) + 1
return np.eye(n_values)[np.array(y_, dtype=np.int32)] # Returns FLOATS
def extract_batch_size(_train, v_idx, step, batch_size):
# Function to fetch a "batch_size" amount of data from "(X|y)_train" data.
shape = list(_train.shape)
shape[0] = batch_size
batch_s = np.empty(shape)
for i in range(batch_size):
# Loop index
index = v_idx[step*batch_size + i]
batch_s[i] = _train[index]
return batch_s
training_data_count = len(X_train) # 7689 training series
test_data_count = len(X_test) # 1890 testing series
## Convolution layers
###############################################################################
def create_new_conv_layer(input_data, num_input_channels, num_filters, filter_shape, pool_shape, name):
# setup the filter input shape for tf.nn.conv_2d
conv_filt_shape = [filter_shape[0], filter_shape[1], num_input_channels,
num_filters]
# initialise weights and bias for the filter
weights = tf.Variable(tf.truncated_normal(conv_filt_shape, stddev=0.03),
name=name+'_W')
bias = tf.Variable(tf.truncated_normal([num_filters]), name=name+'_b')
# setup the convolutional layer operation
out_layer = tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding='SAME')
# add the bias
out_layer += bias
# apply a ReLU non-linear activation
out_layer = tf.nn.relu(out_layer)
# now perform max pooling
ksize = [1, pool_shape[0], pool_shape[1], 1]
strides = [1, 2, 2, 1]
out_layer = tf.nn.max_pool(out_layer, ksize=ksize, strides=strides,
padding='SAME')
return out_layer
layer1 = create_new_conv_layer(x_shaped, 1, 32, [5, 5], [2, 2], name='layer1')
layer2 = create_new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], name='layer2')
layer3 = create_new_conv_layer(layer2, 64, 128, [3, 3], [2, 2], name='layer3')
layer4 = create_new_conv_layer(layer3, 128, 256, [3, 3], [2, 2], name='layer4')
## Fully connected layers
###############################################################################
flattened = tf.reshape(layer4, [-1, 9*25*256])
# setup some weights and bias values for this layer, then activate with ReLU
wd1 = tf.Variable(tf.truncated_normal([9*25*256, 1000], stddev=0.03), name='wd1')
bd1 = tf.Variable(tf.truncated_normal([1000], stddev=0.01), name='bd1')
dense_layer1 = tf.matmul(flattened, wd1) + bd1
dense_layer1 = tf.nn.relu(dense_layer1)
# apply DropOut to hidden layer
drop_out1 = tf.nn.dropout(dense_layer1, keep_prob)
# another layer with softmax activations
wd2 = tf.Variable(tf.truncated_normal([1000, N_CLASSES], stddev=0.03), name='wd2')
bd2 = tf.Variable(tf.truncated_normal([N_CLASSES], stddev=0.01), name='bd2')
#dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2
dense_layer2 = tf.matmul(drop_out1, wd2) + bd2
y_ = tf.nn.softmax(dense_layer2)
## Cost function and Optimizer
###############################################################################
l2 = lambda_loss_amount * sum(
tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) # L2 loss prevents this overkill neural network to overfit the data
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=dense_layer2, labels=y))
cost = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=dense_layer2, targets=y, pos_weight = np.array([1, 1, 1, 1]))) + l2
# add an optimiser
train_op = tf.train.AdamOptimizer(LEARNING_RATE)
gradients = train_op.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients]
optimizer = train_op.apply_gradients(capped_gradients)
# define an accuracy assessment operation
correct_pred = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy_tf = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
## TRAINING
###############################################################################
test_losses = []
test_accuracies = []
train_losses = []
train_accuracies = []
# Launch the graph
#sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=False))
init = tf.global_variables_initializer()
sess.run(init)
# Perform Training steps with "batch_size" amount of example data at each loop
for epoch in range(NUM_EPOCHS):
v_idx_permu = np.random.permutation(training_data_count)
epoch_loss = 0
epoch_acc = 0
for step in range(int(training_data_count/BATCH_SIZE)):
batch_xs = extract_batch_size(X_train, v_idx_permu, step, BATCH_SIZE)
batch_ys = one_hot(extract_batch_size(Y_train, v_idx_permu, step, BATCH_SIZE))
# Fit training using batch data
_, loss, acc = sess.run([optimizer, cost, accuracy_tf],
feed_dict={
x: batch_xs,
y: batch_ys,
keep_prob : 0.5
}
)
epoch_loss += loss
epoch_acc += acc
epoch_loss /= float(step+1)
epoch_acc /= float(step+1)
train_losses.append(epoch_loss)
train_accuracies.append(epoch_acc)
# Evaluate network only at some steps for faster training:
# To not spam console, show training accuracy/loss in this "if"
print("Training epoch #" + str(epoch) + \
": Batch Loss = " + "{:.6f}".format(epoch_loss) + \
", Accuracy = {}".format(epoch_acc))
print("Optimization Finished!")
# Accuracy for test data
#one_hot_predictions, accuracy, final_loss = sess.run(
# [logits, accuracy_tf, cost],
# feed_dict={
# x: X_test,
# y: one_hot(Y_test)
# }
#)
step = 1
final_loss = 0
accuracy = 0
one_hot_predictions = np.empty((0,4))
v_idx_permu = np.arange(test_data_count)
for step in range(int(test_data_count/BATCH_SIZE)):
batch_xs = extract_batch_size(X_test, v_idx_permu, step, BATCH_SIZE)
batch_ys = one_hot(extract_batch_size(Y_test, v_idx_permu, step, BATCH_SIZE))
# Fit training using batch data
one_hot_temp, accuracy_tmp, final_loss_tmp = sess.run([y_, accuracy_tf, cost],
feed_dict={
x: batch_xs,
y: batch_ys,
keep_prob : 1
}
)
one_hot_predictions = np.concatenate((one_hot_predictions,one_hot_temp),axis=0)
accuracy += accuracy_tmp
final_loss += final_loss_tmp
accuracy /= float(step+1)
final_loss /= float(step+1)
print("FINAL RESULT: " + \
"Batch Loss = {}".format(final_loss) + \
", Accuracy = {}".format(accuracy))
### VISUALISATION
################################################################################
import matplotlib
import matplotlib.pyplot as plt
width = 12
height = 12
plt.figure(figsize=(width, height))
indep_train_axis = np.array(range(BATCH_SIZE, (len(train_losses)+1)*BATCH_SIZE, BATCH_SIZE))
plt.plot(indep_train_axis, np.array(train_losses), "b--", label="Train losses")
plt.plot(indep_train_axis, np.array(train_accuracies), "g--", label="Train accuracies")
plt.title("Training session's progress over iterations")
plt.legend(loc='upper right', shadow=True)
plt.ylabel('Training Progress (Loss or Accuracy values)')
plt.xlabel('Training iteration')
plt.show()
### CONFUSION MATRIX
################################################################################
## Results
from sklearn import metrics
predictions = one_hot_predictions.argmax(1)
print("Testing Accuracy: {}%".format(100*accuracy))
print("")
print("Number of trainable parameters: " + str(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])))
print("Precision: {}%".format(100*metrics.precision_score(Y_test[:len(predictions)], predictions, average="weighted")))
print("Recall: {}%".format(100*metrics.recall_score(Y_test[:len(predictions)], predictions, average="weighted")))
print("f1_score: {}%".format(100*metrics.f1_score(Y_test[:len(predictions)], predictions, average="weighted")))
print("")
print("Confusion Matrix:")
confusion_matrix = metrics.confusion_matrix(Y_test[:len(predictions)], predictions)
print(confusion_matrix)
normalised_confusion_matrix = np.array(confusion_matrix, dtype=np.float32)/np.sum(confusion_matrix)*100
print("")
print("Confusion matrix (normalised to % of total test data):")
print(normalised_confusion_matrix)