-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen_udp.py
138 lines (114 loc) · 7.04 KB
/
gen_udp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import argparse
import cv2
import numpy as np
import torch
from torchvision import utils as vutils
import models.GAN_models as G_models
from dataset import test_dataset_builder, up_dataset
def gen_underpaintings(opt, device, Generator_path, adv_output_path1, adv_output_path2, per_output_path, map_output_path):
BOX_MIN = 0
BOX_MAX = 255
# load the well-trained generator
pretrained_generator_path = os.path.join(Generator_path + '/netG_epoch_' + str(opt.epochs) + '.pth')
pretrained_G = G_models.Generator(opt.img_channel).to(device)
pretrained_G.load_state_dict(torch.load(pretrained_generator_path))
pretrained_G.eval()
test_dataset = test_dataset_builder(opt.imgH, opt.imgW, opt.test_path)
test_dataloader = torch.utils.data.DataLoader(
test_dataset, batch_size=1,
shuffle=False, num_workers=4)
up = up_dataset(opt.up_path).to(device)
up = up.repeat(1,1,1,1)
gui_net = torch.load(opt.dt_model).to(device)
gui_net.eval()
for i, data in enumerate(test_dataloader, 0):
ori_labels = data[1][0]
img_index = data[3][0]
test_img = data[5]
test_img = test_img.to(device)
mask = test_img.detach().to(device)
if opt.dark:
test_img = (1-test_img) + torch.mul(mask, up)
else:
test_img = torch.mul(test_img, up)
# gen adv_img
test_map = G_models.guided_net(test_img, gui_net)
vutils.save_image(test_map,"{}/{}_{}_map.png".format(map_output_path, img_index, ori_labels))
perturbation = pretrained_G(up)
perturbation = torch.clamp(perturbation, -opt.eps, opt.eps)
vutils.save_image(perturbation, "{}/{}_{}_per.png".format(per_output_path, img_index, ori_labels))
permap = G_models.guided_net(perturbation, gui_net)
vutils.save_image(permap, "{}/{}_{}_permap.png".format(map_output_path, img_index, ori_labels))
vutils.save_image(permap*100, "{}/{}_{}_permap100.png".format(map_output_path, img_index, ori_labels))
perturbation = torch.mul(mask, perturbation)
"""convert float32 to uint8:
Avoid the effect of float32 on
generating fully complementary frames
"""
perturbation_int = (perturbation*255).type(torch.int8)
adv_img1_uint = (test_img*255).type(torch.uint8) - perturbation_int
adv_img1_uint = torch.clamp(adv_img1_uint, BOX_MIN, BOX_MAX)
adv_img2_uint = (test_img*255).type(torch.uint8) + perturbation_int
adv_img2_uint = torch.clamp(adv_img2_uint, BOX_MIN, BOX_MAX)
print((adv_img1_uint + perturbation_int).equal(adv_img2_uint - perturbation_int))
adv1_map = G_models.guided_net(adv_img1_uint/255, gui_net)
adv2_map = G_models.guided_net(adv_img2_uint/255, gui_net)
vutils.save_image(adv1_map,"{}/{}_{}_map-.png".format(map_output_path, img_index, ori_labels))
vutils.save_image(adv2_map,"{}/{}_{}_map+.png".format(map_output_path, img_index, ori_labels))
adv_img1_uint = adv_img1_uint.squeeze(0).permute(1,2,0)
adv_img1_uint = np.uint8(adv_img1_uint.cpu())
adv_img1 = cv2.cvtColor(adv_img1_uint, cv2.COLOR_RGB2BGR)
adv_img2_uint = adv_img2_uint.squeeze(0).permute(1,2,0)
adv_img2_uint = np.uint8(adv_img2_uint.cpu())
adv_img2 = cv2.cvtColor(adv_img2_uint, cv2.COLOR_RGB2BGR)
cv2.imwrite("{}/{}_{}_adv-.png".format(adv_output_path1, img_index, ori_labels), adv_img1)
cv2.imwrite("{}/{}_{}_adv+.png".format(adv_output_path2, img_index, ori_labels), adv_img2)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--test_path', type= str, required=True, help='path of font test dataset')
parser.add_argument('--up_path', type= str, default='data/protego/up/5.png', help='underpaintings path')
parser.add_argument('--dark', action='store_true', help='use dark background and white text.')
parser.add_argument('--dt_model', type=str, default='/models/dbnet++.pth',
help='path of our guided network DBnet++')
parser.add_argument('--batchsize', type= int, default=4, help='batchsize of training ProTegO')
parser.add_argument('--epochs', type= int, default=60, help='epochs of training ProTegO')
parser.add_argument('--eps', type=float, default=40/255, help='maximum perturbation')
parser.add_argument('--use_eh', action='store_true', help='Use enhancement layers')
parser.add_argument('--use_guide', action='store_true', help='use guided network')
parser.add_argument('--img_channel', type=int, default=3,
help='the number of input channel of text images')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--character', type=str,default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_false', help='default for sensitive character mode')
parser.add_argument('--output', default='res-font', help='the path to save all ouput results')
parser.add_argument('--test_output', default='test-out', help='the path to save output of test results')
parser.add_argument('--adv_output', default='adv', help='the path to save adversarial text images')
parser.add_argument('--per_output', default='perturbation', help='the path to save output of adversarial perturbation')
parser.add_argument('--map_output', default='map', help='the path to save mapping results')
parser.add_argument('--train_output', default='train-out', help='the path to save output of intermediate training results')
parser.add_argument('--saveG', required=True, help='the path to save generator which is used for generated AEs')
opt = parser.parse_args()
print(opt)
output_path = opt.output
Generator_path = opt.saveG
font_name = opt.test_path.split('/')[-1]
test_output_path = os.path.join(output_path, font_name, opt.test_output)
adv_output_path1 = os.path.join(test_output_path, opt.adv_output, 'adv-')
adv_output_path2 = os.path.join(test_output_path, opt.adv_output, 'adv+')
per_output_path = os.path.join(test_output_path, opt.per_output)
map_output_path = os.path.join(test_output_path, opt.map_output)
if not os.path.exists(test_output_path):
os.makedirs(test_output_path)
if not os.path.exists(adv_output_path1):
os.makedirs(adv_output_path1)
if not os.path.exists(adv_output_path2):
os.makedirs(adv_output_path2)
if not os.path.exists(per_output_path):
os.makedirs(per_output_path)
if not os.path.exists(map_output_path):
os.makedirs(map_output_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
gen_underpaintings(opt, device, Generator_path, adv_output_path1, adv_output_path2, per_output_path, map_output_path)