apt-get update && apt-get install vim -y && apt-get install nano -y && apt-get install tmux
cd /workspace && wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && chmod +x Miniconda3-latest-Linux-x86_64.sh && ./Miniconda3-latest-Linux-x86_64.sh
Make sure to save miniconda3
to /workspace/miniconda3
!
Create SSH key and register it with GitHub:
ssh-keygen -t ed25519 -C "rylanschaeffer@gmail.com"
mkdir /workspace/.ssh && cp /root/.ssh/* /workspace/.ssh/ && ls /workspace/.ssh/
eval "$(ssh-agent -s)"
ssh-add /root/.ssh/id_ed25519
cat ~/.ssh/id_ed25519.pub
Then go to GitHub and add the SSH key to your account. Once you're setup, clone the repo:
cd /workspace/ && git clone git@github.com:RylanSchaeffer/AstraFellowship-When-Do-VLM-Image-Jailbreaks-Transfer.git
Then modify your .bashrc
to add:
conda activate universal_vlm_jailbreak_env
cd PerezAstraFellowship-Universal-VLM-Jailbreak
- Make
SECRETS
" export LFS_HOME=/workspace
- We have a conda environment file to pin package versions and make setup faster.
- (Optional) Update conda:
conda update -n base -c defaults conda -y
- Create a conda environment from the env file and activate it (will take a while to build the env):
conda env create -f environment.yml -n vlm -y && conda activate vlm
- Grab the git submodules:
git submodule update --init --recursive
- Install Prismatic and Deepseek
Adding --config-settings editable_mode=compat
is optionable - its for your vscode language to recognize the packages
cd submodules/prismatic-vlms && pip install -e . --config-settings editable_mode=compat && cd ../..
cd submodules/DeepSeek-VL && pip install -e . --config-settings editable_mode=compat && cd ../..
- Make sure to log in to W&B by running
wandb login
- Login to Huggingface with
huggingface-cli login
- (Optional) Update conda:
conda update -n base -c defaults conda -y
- Create and activate the conda environment:
conda create -n universal_vlm_jailbreak_env python=3.11 -y && conda activate universal_vlm_jailbreak_env
- Update pip in preparation of the next step.
pip install --upgrade pip
- Install Pytorch:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia -y
- Install Lightning:
conda install lightning -c conda-forge -y
- Grab the git submodules:
git submodule update --init --recursive
- Install Prismatic and Deepseek
Adding --config-settings editable_mode=compat
is optionable - its for your vscode language to recognize the packages
cd submodules/prismatic-vlms && pip install -e . && cd ../..
cd submodules/DeepSeek-VL && pip install -e . && cd ../..
- Then follow their instructions:
pip install packaging ninja && pip install flash-attn --no-build-isolation
- Manually install a few additional packages:
conda install joblib pandas matplotlib seaborn black tiktoken -y
10a. For running salesforce's xgen
# Needs the latest dev version("4.41.0.dev0")
pip uninstall -y transformers && pip install git+https://github.com/huggingface/pip
pip install open_clip_torch==2.24.0
pip install einops
pip install einops-exts
- Install more stuff.
pip install nvidia-htop sentencepiece hf_transfer anthropic termcolor
- Make sure to log in to W&B by running
wandb login
- Login to Huggingface with
huggingface-cli login
Note: To run on a CPU-only machine (e.g., for eval), use conda install pytorch torchvision torchaudio cpuonly -c pytorch
Note: You might need to subsequently run conda install conda-forge::charset-normalizer -y
- I am using prismatic
41a93d1295ca18e593223f6cde50506db7728ec7
- Prismatic VLMs also disables gradients for the vision backbone. Comment out https://github.com/TRI-ML/prismatic-vlms/blob/main/prismatic/models/vlms/prismatic.py#L308 to optimize attacks.
- Prismatic VLMs also assumes a default
HF_HUB_REPO=TRI-ML/prismatic-vlms
. Until Sidd adds our models to his HF repo, we need to add a conditional toprismatic/models/load.py
to handle our models. Go to line 58:
if model_id_or_path not in GLOBAL_REGISTRY:
raise ValueError(f"Couldn't find `{model_id_or_path = }; check `prismatic.available_model_names()`")
overwatch.info(f"Downloading `{(model_id := GLOBAL_REGISTRY[model_id_or_path]['model_id'])} from HF Hub")
config_json = hf_hub_download(repo_id=HF_HUB_REPO, filename=f"{model_id}/config.json", cache_dir=cache_dir)
checkpoint_pt = hf_hub_download(
repo_id=HF_HUB_REPO, filename=f"{model_id}/checkpoints/latest-checkpoint.pt", cache_dir=cache_dir
)
Replace the above python code with the below python code:
rylan_trained_models = {
"prism-gemma-instruct+2b+clip",
"prism-gemma-instruct+2b+siglip",
"prism-gemma-instruct+2b+dinosiglip",
"prism-gemma-instruct+8b+clip",
"prism-gemma-instruct+8b+siglip",
"prism-gemma-instruct+8b+dinosiglip",
"prism-llama2-chat+7b+clip",
"prism-llama2-chat+7b+siglip",
"prism-llama2-chat+7b+dinosiglip",
"prism-llama3-instruct+8b+clip",
"prism-llama3-instruct+8b+siglip",
"prism-llama3-instruct+8b+dinosiglip",
"prism-mistral-instruct-v0.2+7b+clip",
"prism-mistral-instruct-v0.2+7b+siglip",
"prism-mistral-instruct-v0.2+7b+dinosiglip",
"prism-phi-instruct-3+4b+clip",
"prism-phi-instruct-3+4b+siglip",
"prism-phi-instruct-3+4b+dinosiglip",
}
if (model_id_or_path not in rylan_trained_models) and (model_id_or_path not in GLOBAL_REGISTRY):
raise ValueError(f"Couldn't find `{model_id_or_path = }; check `prismatic.available_model_names()`")
if model_id_or_path in rylan_trained_models:
HF_HUB_REPO = "RylanSchaeffer/prismatic-vlms"
else:
HF_HUB_REPO = "TRI-ML/prismatic-vlms"
overwatch.info(f"Downloading `{(model_id := GLOBAL_REGISTRY[model_id_or_path]['model_id'])} from HF Hub")
config_json = hf_hub_download(repo_id=HF_HUB_REPO, filename=f"{model_id}/config.json", cache_dir=cache_dir)
checkpoint_pt = hf_hub_download(
repo_id=HF_HUB_REPO, filename=f"{model_id}/checkpoints/latest-checkpoint.pt", cache_dir=cache_dir
)
timm
must be version0.9.16
not1.0.3
- Llava disables gradients for the "vision tower"; see Unispac/Visual-Adversarial-Examples-Jailbreak-Large-Language-Models#9 (comment) for the solution
- Commenting off
llava/models/multimodal_encoder/clip_encoder/line39
should work
- Commenting off
Create a sweep using wandb sweep <path to W&B sweep e.g., sweeps/attack/...>
. This will give you a W&B sweep ID. Then:
cd PerezAstraFellowship-Universal-VLM-Jailbreak
conda activate universal_vlm_jailbreak_env
export PYTHONPATH=.
export CUDA_VISIBLE_DEVICES=7
wandb agent rylan/universal-vlm-jailbreak/srvmywo4
cd PerezAstraFellowship-Universal-VLM-Jailbreak
conda activate universal_vlm_jailbreak_env
export PYTHONPATH=.
export CUDA_VISIBLE_DEVICES=1
wandb agent rylan/universal-vlm-jailbreak-eval/jb02fx4o