-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirections_9_OrderChangedBKP.m
287 lines (210 loc) · 11.4 KB
/
Directions_9_OrderChangedBKP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
% this script will generate multiple rotations of the subject image and
% synthesize a high resolution version of each and then combine all
% together using sapiro's method. this experiment uses 3d patches.
addpath('/home/amod/mimecs/code/code_basic_libs/');
addpath('/home/roy/Programs/fileformats_toolbox/nii/');
addpath(genpath('/home/amod/mimecs/code/code_basic_libs/ScSR/'));
addpath(genpath('/home/roy/Programs/spams/'))
addpath(genpath('/iacl/pg17/sachin/for_sachin/code/AplusCodes_SR/'))
addpath(genpath('/home/amod/mimecs/ISBI2013_RegressionSynthesis/code/metrix_mux/'));
addpath(genpath('/home/amod/mimecs/code/code_basic_libs/sepspyr/deps/matlabPyrTools-1.3/'))
addpath(genpath('/iacl/pg17/sachin/for_sachin/code_backup/code'))
% input dirdata_dir = '/iacl/pg15/amod/SelfSuperRes_Experiments/data/NeuroMM/imgs/cropped/2mm/';
data_dir = '/iacl/pg15/amod/SelfSuperRes_Experiments/data/NeuroMM/imgs/cropped/2mm/'
data_list = dir([data_dir,'*.nii']);
% store results
results_dir = '/iacl/pg17/sachin/for_sachin/results/NeuroMM/2mmNew/'
temp_results_dir = '/iacl/pg17/sachin/for_sachin/results/NeuroMM/2mmNew/temp/'
% comparison with ground truth
truth_dir = '/iacl/pg15/amod/SelfSuperRes_Experiments/data/NeuroMM/imgs/cropped/';
true_list = dir([truth_dir,'*.nii']);
interp_psnr = zeros(9,1);
%all_psnr = zeros(3,20,9)
% first, load the atlas images. A1 = downsampled in X + downsampled in Z
% image. A2 = just downsampled in Z. These are both axial images
for iter = 1:1% length(data_list)
tmp = load_untouch_nii([data_dir, data_list(iter).name]);
subjname = strtok(data_list(iter).name, '_');
A2 = double(tmp.img);
A2(A2<0) = 0;
int_thresh = 10;
A2 = wmPeakNormalize(A2, int_thresh); % wm peak normalize for PSNR calculations later
dim_A2_orig = size(A2);
voxel_size_z = tmp.hdr.dime.pixdim(4);
voxel_size_x = tmp.hdr.dime.pixdim(3);
voxel_size_y = tmp.hdr.dime.pixdim(2);
HRvoxel_size_z = min([voxel_size_y, voxel_size_x, voxel_size_z]);
HRvoxel_size_x = HRvoxel_size_z;
HRvoxel_size_y = HRvoxel_size_z;
% create the grid
A2_X_spacing = voxel_size_x;
A2_Y_spacing = voxel_size_y;
A2_Z_spacing = voxel_size_z;
[A2Ygrid,A2Xgrid, A2Zgrid] = meshgrid(0+0.5*A2_Y_spacing:A2_Y_spacing:(size(A2,1)-0.5)*A2_Y_spacing, 0+0.5*A2_X_spacing:A2_X_spacing:(size(A2,2)-0.5)*A2_X_spacing, 0+0.5*A2_Z_spacing:A2_Z_spacing:(size(A2,3)-0.5)*A2_Z_spacing) ;
[newA2Ygrid,newA2Xgrid, newA2Zgrid] = meshgrid(0+0.5*HRvoxel_size_y:HRvoxel_size_y:(size(A2,1)-0.5)*A2_Y_spacing, 0+0.5*HRvoxel_size_x:HRvoxel_size_x:(size(A2,2)-0.5)*A2_X_spacing, 0+0.5*HRvoxel_size_z:HRvoxel_size_z:(size(A2,3))*A2_Z_spacing-0.5*HRvoxel_size_z) ;
% recalculate A2 on this grid
ZI = interp3(A2Ygrid, A2Xgrid, A2Zgrid, permute(A2,[2,1,3]), newA2Ygrid, newA2Xgrid, newA2Zgrid, 'spline');
A2up = permute(ZI,[2,1,3]);
A2up = wmPeakNormalize(A2up, int_thresh);
% pad the image so that we don't run out of x,y,z extents after
% rotation
sz = size(A2up);
% maxdiff = max(sz) - min(sz);
md = floor([256-sz(1),256-sz(2),256-sz(3)]./2);
% A2up = padarray(A2up,[maxdiff,maxdiff,maxdiff]);
A2up = PadImage(A2up,256);
A2up(isnan(A2up)) = 0;
% model the initial blurring as a truncSinc in Fourier space
Ny = size(A2up,1);
Nx = size(A2up,2);
Nz = size(A2up,3);
lp_Nyq_freq_z = 1/(2*voxel_size_z);
lp_Nyq_freq_y = 1/(2*voxel_size_y);
lp_Nyq_freq_x = 1/(2*voxel_size_x);
Nyq_u = 1/(2*HRvoxel_size_x); % Nyquist of data in first dimension
Nyq_v = 1/(2*HRvoxel_size_y); % Nyquist of data in second dimension
Nyq_w = 1/(2*HRvoxel_size_z); % Nyquist of data in second dimension
UGridSize = Nx*HRvoxel_size_x;
VGridSize = Ny*HRvoxel_size_y;
WGridSize = Nz*HRvoxel_size_z;
du = 1/UGridSize; % Wavenumber increment
dv = 1/VGridSize; % Frequency increment
dw = 1/WGridSize;
U = -Nyq_u : du : Nyq_u-du;
V = -Nyq_v : dv : Nyq_v-dv;
W = -Nyq_w : dw : Nyq_w-dw;
cutoff_u = (length(U)/2)*(lp_Nyq_freq_x / Nyq_u);
cutoff_v = (length(V)/2)*(lp_Nyq_freq_y / Nyq_v);
cutoff_w = (length(W)/2)*(lp_Nyq_freq_z / Nyq_w);
% create the blurring filter in Fourier space
H_A = lpfilter_3d('truncSincZ', length(U), length(V),length(W), 0,1,cutoff_u,cutoff_v, cutoff_w);
H_A = fftshift(H_A);
F_A2up = fftshift(fftn(A2up));
% directions of different blurs that we will consider
all_axes = [1,0,0;
0,1,0;
0,0,1];
angles = [pi/2];
% upsample_factor only used as a parameter for patch size while extracting features
upsample_factor = [voxel_size_y/HRvoxel_size_y,voxel_size_x/HRvoxel_size_x,voxel_size_z/HRvoxel_size_z];
windows = {[2,2,2],[3,3,3],[4,4,4]};% min size of patch -- just pick one. [2,2,2] works
% original blur direction is z
orig_blur_dir = [0,0,1];
for witer = 1%:3
window = windows{witer}
% store the synthesized images for each direction in a cell array
S2_r = cell(size(all_axes,1), 1);
% parallelize synthesis for directions. remove par for debugging.
for ax_iter = 1:size(all_axes,1)
curr_axes = all_axes(ax_iter,:);
curr_angle = angles(1);
% create rotation matrix for rotation of 90 degrees about
% curr_axes
ratM = rotationmat3D(curr_angle, curr_axes);
% find x and y projections: for deciding the x and y
% dimensions of the patch feature we are going to use. the
% less the blur the longer the patch dimension
unit_axes = curr_axes./sqrt(sum((curr_axes.^2)));
rot_blur_dir = abs(ratM*orig_blur_dir');
rot_blur_magn = upsample_factor(3)*rot_blur_dir;
nz_idxs = find(rot_blur_magn > 0.01);
onez = ones(size(rot_blur_magn));
onez(nz_idxs) = 0;
upscaling = rot_blur_magn + [1;1;1];
upscaling = round(upscaling');
upscaling
% this can be very memory inefficient. if memory is falling
% short, use 'linear' instead of 'spline'
% A2_r = rotImg3(A2up, curr_angle, curr_axes, 'spline',0);
A2_r = rotImg3(A2up, curr_angle, curr_axes, 'linear',0);
A2_r(isnan(A2_r)) = 0;
F_A2_r = fftshift(fftn(A2_r));
% now apply this filter to A2_r to create S1.
% Recent experiments have shown that we can get better results
% PSNR-wise if H_A is NOT applied. THIS IS NOT INTUITIVE AND
% NEEDS TO BE INVESTIGATED
F_A2_r_H_a = F_A2_r;%.*H_A;
F_A2_r_H_a(isnan(F_A2_r_H_a)) = 0;
A2_r_H_a = real((ifftn(ifftshift(F_A2_r_H_a))));
S1_r = A2_r_H_a;
S1_r = wmPeakNormalize(S1_r, int_thresh);
% Now to create A1. This is done by applying H_r to A2up.
% h_A is the filter in image space, which is obtained by
% inverse Fourier transforming of H_A. h_A_r is rotated filter
% in the images space, H_r is the rotated filter in Fourier
% space
h_A = fftshift(ifftn(ifftshift(H_A)));
h_A_r = rotImg3(h_A, curr_angle, curr_axes, 'linear',0); % can be spline if memory permits
h_A_r(isnan(h_A_r)) = 0;
H_r = abs(fftshift(fftn(h_A_r)));
% Create A1 by blurring A2up by H_r
F_A2_H_r = F_A2up.*H_r;
A2_H_r = real((ifftn(ifftshift(F_A2_H_r))));
A1 = A2_H_r;
A1 = wmPeakNormalize(A1, int_thresh);
% now we have A1, A2, S1. Pull off a synthesis.
A1(isnan(A1)) = 0;
S1_r(isnan(S1_r)) = 0;
disp('synthesizing for axis')
curr_axes
% parameters for Anchored neighborhood regression
lambda = 0.10
% dict_size: testing has showed that this does not matter much
% for 128, 256, 512, 1024. Using 128 because it is fast
dict_size = 128;
% patches are synthesized
overlap = [2,2,2];%[N1(1)-2,N1(2)-2,N1(3)-1];
% sampling patches at this interval for training
sampling = [1,1,1];
% patch size
N1 = upscaling.*window;
border = [15, 15, 15];
% can be increased when there are lots of interpolation
% intensities
intensity_threshold = 30;
% learn the mapping using funcLearnANRDict
[conf] = funcLearnANRDict(A1, A2up, upscaling, N1, intensity_threshold, dict_size, border);
% change the border and overlap parameters for synthesis
conf.border = [1,1,1];
conf.overlap = conf.window - [1 1 1];
conf
S2_r5 = funcSelfSuperRes_ANR_gradients(conf, S1_r);
S2_r5 = wmPeakNormalize(S2_r5, int_thresh);
S2_r{ax_iter} = (S2_r5);
tmpp = tmp;%tmparray{ax_iter};
tmpp.img = S2_r5; %S2_r{ax_iter, ang_iter};
tmpp.hdr.dime.dim = [3 size(S2_r5,1) size(S2_r5,2) size(S2_r5,3) 1 1 1 1]
tmpp.hdr.dime.pixdim = [1 HRvoxel_size_y HRvoxel_size_x HRvoxel_size_z 0 0 0 0]
outfile = [temp_results_dir,subjname,'_varPatchSize_ANR_Gradient_truncSinc_',num2str(ax_iter),'_window_',num2str(conf.window),'_',num2str(dict_size),'_9dir_orderchang.nii'];
% outfile = ['test_5x5x1_Gradient_MyTree_spline_',num2str(ax_iter),'_overlap_',num2str(overlap),'_9directions','.nii'];
tmpp.fileprefix = outfile
save_untouch_nii(tmpp, outfile);
end
%
%%
%k=1
% for p = [0.05, 0.1, 0.2, 0.8, 1.2, 2,4,8,12]
for p = [35]
S2_HR = funcCombineAllFourierOrientations_standardMax(S2_r, all_axes, p,sz,maxdiff);
S2_HR = wmPeakNormalize(S2_HR, int_thresh);
tmp.img = S2_HR;
tmp.hdr.dime.dim = [3 size(S2_HR,1) size(S2_HR,2) size(S2_HR,3) 1 1 1 1];
tmp.hdr.dime.pixdim = [1 HRvoxel_size_y HRvoxel_size_x HRvoxel_size_z 0 0 0 0];
outfile = [results_dir,subjname, '_varPatchsize_ANR_truncSinc_FinalSuperRes_pMaximum(p=infi)',num2str(p),'_3dpatches_',num2str(window),'_9dirOrderChanged_.nii'];
tmp.fileprefix = outfile;
save_untouch_nii(tmp, outfile);
tmptruth = load_untouch_nii([truth_dir,true_list(iter).name]);
A_HR = double(tmptruth.img);
A_HR = wmPeakNormalize(A_HR, int_thresh);
fg_idxs = find(A_HR > 375); % removes background and very dim voxels
maxI = max(A_HR(:));
% A2up = A2up(maxdiff+1:maxdiff+sz(1), maxdiff+1:maxdiff+sz(2), maxdiff+1:maxdiff+sz(3));
mse = mean((A_HR(fg_idxs) - S2_HR(fg_idxs)).^2)
psnr = 20*log10(maxI) - 10*log10(mse)
interp_psnr(k) = psnr;
k=k+1;
pstr = {'0p05', '0p1', '0p2', '0p8', '1p2', '2', '4','8','12'};
end
end
end
%