-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtest5x5.py
65 lines (58 loc) · 2.33 KB
/
test5x5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import torch
import argparse
import numpy as np
from collections import defaultdict
from mmcv import Config
from mmcv.runner import load_checkpoint, init_dist, get_dist_info
from mmcv.parallel import MMDistributedDataParallel
from mmdet.apis import set_random_seed, multi_gpu_test
from mmdet3d.models import build_model
from mmdet3d.datasets import build_dataloader, build_dataset
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a 5 models 5 times')
parser.add_argument('config', help='config file')
parser.add_argument('checkpoint', help='checkpoints directory')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
init_dist(args.launcher, **cfg.dist_params)
checkpoints = tuple(filter(lambda x: x.endswith('.pth'), os.listdir(args.checkpoint)))
print('found checkpoints: ', checkpoints)
metrics = defaultdict(list)
model = build_model(cfg.model, test_cfg=cfg.get('test_cfg'))
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
for i, checkpoint in enumerate(checkpoints):
load_checkpoint(model, os.path.join(args.checkpoint, checkpoint), map_location='cpu')
for j in range(5):
set_random_seed(j * 111)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=True,
shuffle=False)
outputs = multi_gpu_test(model, data_loader)
if get_dist_info()[0] == 0:
for k, v in dataset.evaluate(outputs).items():
metrics[k].append(v)
if get_dist_info()[0] == 0:
for k in ('mAP_0.25', 'mAP_0.50'):
print(k, 'min, mean, max:', np.min(metrics[k]), np.mean(metrics[k]), np.max(metrics[k]))
if __name__ == '__main__':
main()